Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of ZrSiO4 on far-infrared radiation characteristics of Pb3O4/Mg/PTFE infrared decoy

WANG Bing CHEN Zongsheng SHI Jiaming XU Hexiu

Citation:

Effect of ZrSiO4 on far-infrared radiation characteristics of Pb3O4/Mg/PTFE infrared decoy

WANG Bing, CHEN Zongsheng, SHI Jiaming, XU Hexiu
cstr: 32037.14.aps.74.20241048
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Traditional composite infrared decoy, magnesium/teflon (Mg/PTFE), has been widely used in countering infrared guided weapons since its advent. However, with the development of infrared guidance technology, its drawbacks such as insufficient far-infrared radiation and high combustion temperature emerge, making it difficult to counter novel infrared guided weapons. To address this issue, a strategy of utilizing zirconium silicate (ZrSiO4) as an additive is proposed to improve the infrared radiation of infrared decoy. Therein, seven formulations with different ratios of ZrSiO4 are designed based on the basic formula of trilead tetraoxide/ magnesium/teflon (Pb3O4/Mg/PTFE) mixed powder. And the effect of ZrSiO4 serving as an additive on the performance of Pb3O4/Mg/PTFE infrared decoy is analyzed through experiments. First, initial experiments are conducted on the thermal decomposition characteristics of the basic formula (ZrSiO4 addition ratio is 0%) and its variant counterpart with 12% ZrSiO4. Subsequently, the combustion behaviors of the compacted formulation samples are examined using an infrared thermal imager operating within the 7.5–14 μm range, subsequently, the combution time, combution temperature, burning rate, radiation area, radiance, and radiation intensity of individual samples are computed. These results show that incorporation of ZrSiO4 reduces the intensity of the primary exothermic peak during the reactions with a mixed infrared decoy agent, yielding suboptimal thermal efficiencies. Furthermore, the combustion durations of the samples progressively increase with ZrSiO4 addition increasing, accompanied by consistent reductions in their combustion temperatures. Specifically, the sample reaction time peaks at 3.73 s at a ZrSiO4 addition ratio of 18%, while the combution temperature drops to a minimum value of 765.46 ℃. Moreover, the far-infrared radiance and radiation intensity demonstrate an initial-increase-then-decrease trend with ZrSiO4 addition increasing, thereby achieving the maximum values of 2461 W/(m2·sr) and 142 W/sr, respectively at a ZrSiO4 addition ratio of 6%. Furthermore, the far-infrared radiance and radiation intensity of the base formulation are enhanced when ZrSiO4 addition ratios are kept within 18% and 9% respectively. Based on the comprehensive analysis of the experimental data and considering the requirements for the infrared decoy in practical applications, a formulation with a ZrSiO4 addition ratio of 6% is adopted as an improved formulation for the Pb3O4/Mg/PTFE infrared decoy.
      Corresponding author: SHI Jiaming, shijiaming17@nudt.edu.cn ; XU Hexiu, hxxuellen@gmail.com
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. HJJ2017-0671).
    [1]

    邵晓光 2019 制导与引信 40 020012Google Scholar

    Shao X G 2019 Guidance Fuze 40 020012Google Scholar

    [2]

    卢晓, 梁晓庚, 贾晓洪 2021 红外与激光工程 50 29

    Lu X, Liang X G, Jia X H 2021 Infrared Laser Eng. 50 29

    [3]

    周遵宁 2017 光电对抗材料基础(北京: 北京理工大学出版社

    Zhou Z N 2017 Fundermentals of Electro-optical Countermeasure Materials (Beijing: Beijing Institute of Technology Press

    [4]

    李泽军, 李志勇, 占明明, 张波, 姚鲲, 李秋怡, 张定宏 2024 固体火箭技术 47 15Google Scholar

    Li Z J, Li Z Y, Zhan M M, Zhang B, Yao K, Li Q Y, Zhang D H 2024 J. Solid Rocket Technol. 47 15Google Scholar

    [5]

    赵亮, 巨秀芝 2019 航天电子对抗 35 50Google Scholar

    Zhao L, Ju X Z 2019 Aerospace Electron. Warfare 35 50Google Scholar

    [6]

    叶淑琴, 朱晨光, 林红雪, 欧阳的华, 潘功配 2017 红外与激光工程 46 90

    Ye S Q, Zhu C G, Lin H X, Ouyang D H, Pan G P 2017 Infrared Laser Eng. 46 90

    [7]

    Elbasuney S, Elmotaz A A, Sadek M A 2020 J. Mater. Sci. Mater. El. 31 6130

    [8]

    金青君, 吴昱, 史红星, 任秀娟, 赵建锋 2020 火工品 3 41Google Scholar

    Jin Q J, Wu Y, Shi H X, Ren X J, Zhao J F 2020 Initiators Pyrotechn. 3 41Google Scholar

    [9]

    胡亚鹏, 王虎, 聂学辉, 孙宏涛, 姜建增, 郭鹏宏, 强文学 2023 火工品 5 34Google Scholar

    Hu Y P, Wang H, Nie X H, Sun H T, Jiang J Z, Guo P H, Qiang W X 2023 Initiators Pyrotechn. 5 34Google Scholar

    [10]

    杨谦 2021 硕士学位论文(南京: 南京理工大学)

    Yang Q 2021 M. S. Thesis (Nanjing: Nanjing University of Science & Technology

    [11]

    张建奇, 方小平 2011 红外物理(西安: 西安电子科技大学出版社)

    Zhang J Q, Fang X P 2011 Infrared Physics (Xian: Xidian University Press

    [12]

    于志良 1994 光电技术应用 2 12

    Yu Z L 1994 Electro-Opt. Technol. Appl. 2 12

    [13]

    卢为开 1983 远红外辐射加热技术(上海: 上海科学技术出版社)

    Lu K W 1983 Infrared Radiation Heating Technology (Shanghai: Shanghai Scientific & Technical Publishers

    [14]

    王冰, 陈宗胜, 刘洋, 汪家春, 时家明 2018 火工品 3 13Google Scholar

    Wang B, Chen Z S, Liu Y, Wang J C, Shi J M 2018 Initiators Pyrotechn. 3 13Google Scholar

    [15]

    Griffiths T T, Robertson J, Hall P G 1985 16th International Annual ICT Conference, Germany, 1985 p19

    [16]

    希洛夫著 (马永利译) 1959 烟火药火焰的发光 (北京: 国防工业出版社)

    Shilov (translated by Ma Y L) 1959 Flame Radiation of Fire Works Composition (Beijing: National Defence Industry Press

    [17]

    王伯羲, 冯增国 1997 火药燃烧理论(北京: 北京理工大学出版社)

    Wang B X, Feng Z G 1997 Theory of Gunpowder Combustion (Beijing: BeiJing Institute Of Technology Press

    [18]

    屠传经 1992 热传导(北京: 高等教育出版社)

    Tu C J 1992 Infrared Physics (Beijing: Higher Education Press

    [19]

    刘光启, 马连湘, 项曙光 2013 化学化工物性数据手册·无机卷 (北京:化学工业出版社)

    Liu G Q, Ma L X, Xiang S G 2013 Chemical and Chemical Data Sheet (Beijing: Chemical Industry Press

    [20]

    James G Speight 2005 Langes Handbook of Chemistry (16th Ed.) (New York: Mc Graw-Hill, Inc

  • 图 1  14个不同ZrSiO4添加量混合红外诱饵剂药柱样品实物图

    Figure 1.  Photograph of 14 samples of composite infrared decoys with varied ZrSiO4.

    图 2  药柱样品燃烧实验及测试场景

    Figure 2.  Experimental setup and testing scenarios for combustion of samples.

    图 3  Pb3O4/Mg/PTFE红外诱饵剂基础配方TG-DSC曲线

    Figure 3.  TG-DSC curve of basic formula of Pb3O4/Mg/PTFE composite infrared decoy.

    图 4  ZrSiO4添加量为12%时Pb3O4/Mg/PTFE/ ZrSiO4混合红外诱饵剂TG-DSC曲线

    Figure 4.  TG-DSC curve of Pb3O4/Mg/PTFE/ZrSiO4 composite infrared decoy with 12% addition of ZrSiO4.

    图 5  Pb3O4/Mg/PTFE红外诱饵剂基础配方(1号配方)和ZrSiO4添加量为12%配方(5号配方)的XRD测试图

    Figure 5.  XRD curve of basic formula of Pb3O4/Mg/PTFE composite infrared decoy (No.1) and Pb3O4/Mg/PTFE/ZrSiO4 composite infrared decoy with 12% addition of ZrSiO4 (No.5).

    图 6  7种不同ZrSiO4添加量混合红外诱饵剂配方反应温度

    Figure 6.  Combustion temperature of 7 types of composite infrared decoys with varied ZrSiO4.

    图 7  7种不同ZrSiO4添加量混合红外诱饵剂配方燃烧时间和质量燃速

    Figure 7.  Combustion time and burning rate of 7 types of composite infrared decoys with varied ZrSiO4.

    图 8  7种不同ZrSiO4添加量混合红外诱饵剂配方导温系数

    Figure 8.  Thermal Diffusivity of 7 types of composite infrared decoys with varied ZrSiO4.

    图 9  7种不同ZrSiO4添加量混合红外诱饵剂配方燃烧红外热像图

    Figure 9.  Infrared thermal image of 7 types of composite infrared decoys with varied ZrSiO4.

    图 10  7种不同ZrSiO4添加量混合红外诱饵剂配方辐射特性

    Figure 10.  Radiation characteristics of 7 types of composite infrared decoys with varied ZrSiO4.

    表 1  7种不同ZrSiO4添加量混合红外诱饵剂配方成分比例

    Table 1.  Compositional ratios of 7 types of composite infrared decoys with varied ZrSiO4.

    Formula m (Pb3O4)/% m (Mg)/% m (PTFE)/% m (ZrSiO4)/%
    1 35 50 15 0
    2 33.95 48.5 14.55 3
    3 32.9 47 14.1 6
    4 31.85 45.5 13.65 9
    5 30.8 44 13.2 12
    6 29.75 42.5 12.75 15
    7 28.7 41 12.3 18
    DownLoad: CSV

    表 2  14个不同ZrSiO4添加量混合红外诱饵剂药柱样品质量和高度

    Table 2.  Weight and height of 14 samples of composite infrared decoys with varied ZrSiO4.

    Formula I II Average
    Weight/g Height/mm Weight/g Height/mm Weight/g Height/mm
    1 15.99 12.97 15.98 13.01 15.99 12.99
    2 15.99 12.96 15.98 12.90 15.99 12.93
    3 15.99 12.95 15.99 12.85 15.99 12.90
    4 15.96 12.84 15.96 12.83 15.96 12.84
    5 15.97 12.61 15.97 12.75 15.97 12.68
    6 15.99 12.53 15.95 12.74 15.97 12.64
    7 15.98 12.45 15.98 12.41 15.98 12.43
    DownLoad: CSV

    表 3  7种不同ZrSiO4添加量混合红外诱饵剂配方燃烧时间、温度和燃速

    Table 3.  Combution time, temperature, and burning rate of 7 types of composite infrared decoys with varied ZrSiO4.

    Formula I II Average
    T/℃ Combustion
    time/s
    Burning
    rate/(g·s–1)
    T/℃ Combustion
    time/s
    Burning
    rate/(g·s–1)
    T/℃ Combustion
    time/s
    Burning
    rate/(g·s–1)
    1 857.00 3.01 5.32 823.90 3.06 5.23 840.50 3.03 5.27
    2 822.58 3.09 5.18 852.19 3.07 5.21 837.39 3.08 5.19
    3 830.89 3.16 5.06 834.05 3.11 5.14 832.47 3.14 5.10
    4 817.44 3.37 4.75 824.39 3.25 4.92 820.91 3.31 4.84
    5 809.42 3.44 4.65 798.71 3.53 4.53 804.06 3.49 4.59
    6 782.70 3.71 4.31 788.54 3.62 4.42 785.62 3.67 4.37
    7 761.32 3.77 4.24 769.59 3.69 4.34 765.46 3.73 4.29
    DownLoad: CSV

    表 4  Pb3O4, Mg, PTFE和ZrSiO4物理性质

    Table 4.  Physical properties of Pb3O4, Mg, PTFE, and ZrSiO4.

    Material λ/(J·m–1·s–1·K–1) c/(J·kg–1·K–1) ρ/(kg–1·m–3)
    Mg 165.1 1000 1745
    PTFE 0.24 1050 2150
    Pb3O4 0.288 226 9100
    ZrSiO4 5.1 800 4560
    DownLoad: CSV

    表 5  7种不同ZrSiO4添加量混合红外诱饵剂配方辐射特性

    Table 5.  Radiation characteristics of 7 types of composite infrared decoys with varied ZrSiO4

    Formula I II Average
    Radiance/
    (W·m–2·sr–1)
    Radiation
    area/mm2
    Radiation intensity/
    (W·sr–1)
    Radiance/
    (W·m–2·sr–1)
    Radiation
    area/mm2
    Radiation intensity/
    (W·sr–1)
    Radiance/
    (W·m–2·sr–1)
    Radiation
    area/mm2
    Radiation intensity/
    (W·sr–1)
    1 2134 54957 117 2071 46744 97 2103 50851 107
    2 2067 50508 104 2329 51714 120 2198 51111 112
    3 2452 59449 146 2470 55706 138 2461 57577 142
    4 2240 43043 96 2410 59574 144 2325 51308 120
    5 2317 41358 96 2277 40256 92 2297 40807 94
    6 2256 39882 90 2290 39050 89 2273 39466 90
    7 2228 38302 85 2248 36888 82 2238 37595 84
    DownLoad: CSV
    Baidu
  • [1]

    邵晓光 2019 制导与引信 40 020012Google Scholar

    Shao X G 2019 Guidance Fuze 40 020012Google Scholar

    [2]

    卢晓, 梁晓庚, 贾晓洪 2021 红外与激光工程 50 29

    Lu X, Liang X G, Jia X H 2021 Infrared Laser Eng. 50 29

    [3]

    周遵宁 2017 光电对抗材料基础(北京: 北京理工大学出版社

    Zhou Z N 2017 Fundermentals of Electro-optical Countermeasure Materials (Beijing: Beijing Institute of Technology Press

    [4]

    李泽军, 李志勇, 占明明, 张波, 姚鲲, 李秋怡, 张定宏 2024 固体火箭技术 47 15Google Scholar

    Li Z J, Li Z Y, Zhan M M, Zhang B, Yao K, Li Q Y, Zhang D H 2024 J. Solid Rocket Technol. 47 15Google Scholar

    [5]

    赵亮, 巨秀芝 2019 航天电子对抗 35 50Google Scholar

    Zhao L, Ju X Z 2019 Aerospace Electron. Warfare 35 50Google Scholar

    [6]

    叶淑琴, 朱晨光, 林红雪, 欧阳的华, 潘功配 2017 红外与激光工程 46 90

    Ye S Q, Zhu C G, Lin H X, Ouyang D H, Pan G P 2017 Infrared Laser Eng. 46 90

    [7]

    Elbasuney S, Elmotaz A A, Sadek M A 2020 J. Mater. Sci. Mater. El. 31 6130

    [8]

    金青君, 吴昱, 史红星, 任秀娟, 赵建锋 2020 火工品 3 41Google Scholar

    Jin Q J, Wu Y, Shi H X, Ren X J, Zhao J F 2020 Initiators Pyrotechn. 3 41Google Scholar

    [9]

    胡亚鹏, 王虎, 聂学辉, 孙宏涛, 姜建增, 郭鹏宏, 强文学 2023 火工品 5 34Google Scholar

    Hu Y P, Wang H, Nie X H, Sun H T, Jiang J Z, Guo P H, Qiang W X 2023 Initiators Pyrotechn. 5 34Google Scholar

    [10]

    杨谦 2021 硕士学位论文(南京: 南京理工大学)

    Yang Q 2021 M. S. Thesis (Nanjing: Nanjing University of Science & Technology

    [11]

    张建奇, 方小平 2011 红外物理(西安: 西安电子科技大学出版社)

    Zhang J Q, Fang X P 2011 Infrared Physics (Xian: Xidian University Press

    [12]

    于志良 1994 光电技术应用 2 12

    Yu Z L 1994 Electro-Opt. Technol. Appl. 2 12

    [13]

    卢为开 1983 远红外辐射加热技术(上海: 上海科学技术出版社)

    Lu K W 1983 Infrared Radiation Heating Technology (Shanghai: Shanghai Scientific & Technical Publishers

    [14]

    王冰, 陈宗胜, 刘洋, 汪家春, 时家明 2018 火工品 3 13Google Scholar

    Wang B, Chen Z S, Liu Y, Wang J C, Shi J M 2018 Initiators Pyrotechn. 3 13Google Scholar

    [15]

    Griffiths T T, Robertson J, Hall P G 1985 16th International Annual ICT Conference, Germany, 1985 p19

    [16]

    希洛夫著 (马永利译) 1959 烟火药火焰的发光 (北京: 国防工业出版社)

    Shilov (translated by Ma Y L) 1959 Flame Radiation of Fire Works Composition (Beijing: National Defence Industry Press

    [17]

    王伯羲, 冯增国 1997 火药燃烧理论(北京: 北京理工大学出版社)

    Wang B X, Feng Z G 1997 Theory of Gunpowder Combustion (Beijing: BeiJing Institute Of Technology Press

    [18]

    屠传经 1992 热传导(北京: 高等教育出版社)

    Tu C J 1992 Infrared Physics (Beijing: Higher Education Press

    [19]

    刘光启, 马连湘, 项曙光 2013 化学化工物性数据手册·无机卷 (北京:化学工业出版社)

    Liu G Q, Ma L X, Xiang S G 2013 Chemical and Chemical Data Sheet (Beijing: Chemical Industry Press

    [20]

    James G Speight 2005 Langes Handbook of Chemistry (16th Ed.) (New York: Mc Graw-Hill, Inc

  • [1] Lu Sheng-Guo, Li Dan-Dan, Lin Xiong-Wei, Jian Xiao-Dong, Zhao Xiao-Bo, Yao Ying-Bang, Tao Tao, Liang Bo. Influence of electric field on the phenomenological coefficient and electrocaloric strength in ferroelectrics. Acta Physica Sinica, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [2] Yang An-Ping,  Wang Yu-Wei,  Zhang Shao-Wei,  Li Xing-Long,  Yang Zhi-Jie,  Li Yao-Cheng,  Yang Zhi-Yong. Refractive index and thermo-optic coefficient of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [3] Li Kai, Liu Jun, Liu Wei-Qiang. Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter model. Acta Physica Sinica, 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [4] Wang Zuo, Zhang Jia-Zhong, Wang Heng. Non-orthogonal multiple-relaxation-time lattice Boltzmann method for axisymmetric thermal flows. Acta Physica Sinica, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [5] Hu Jin-Xiu, Gao Xiao-Wei. Reduced order model analysis method via proper orthogonal decomposition for variable coefficient of transient heat conduction based on boundary element method. Acta Physica Sinica, 2016, 65(1): 014701. doi: 10.7498/aps.65.014701
    [6] Peng Yong, Luo Xi-Xian, Fu Yao, Xing Ming-Ming. Synthesis of near infrared PbS quantum dots by pyrolysis of organometallic sulfur complex. Acta Physica Sinica, 2013, 62(20): 208105. doi: 10.7498/aps.62.208105
    [7] Xie Hua-Qing, Chen Li-Fei. Mechanism of enhanced convective heat transfer coefficient of nanofluids. Acta Physica Sinica, 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [8] Ji Xiao-Ling, Li Xiao-Qing. The far-field divergence angle and the far-field radiant intensity distribution of Gaussian Schell-model array beams. Acta Physica Sinica, 2009, 58(7): 4624-4629. doi: 10.7498/aps.58.4624
    [9] Wang Yan-Song, Wang Wen-Quan, Yuan Zhou, Zhang Li-Gong, Xu Shi-Feng. Effect of thermal initiator concentration on piezoresistivity of polymer-derived amorphous silicon carbonitrides. Acta Physica Sinica, 2008, 57(10): 6540-6544. doi: 10.7498/aps.57.6540
    [10] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Ju You-Lun. Fractional thermal loading and thermal lensing in end-pumped Tm,Ho:YLF lasers. Acta Physica Sinica, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [11] Liu Ling-Tao, Wang Min-Sheng, Han Xiao-Ying, Li Jia-Ming. Photonionization and radiative recombination of Br——Comparison of rate coefficients deduced form the average atom and detailed configuration models. Acta Physica Sinica, 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [12] . Acta Physica Sinica, 2000, 49(2): 282-287. doi: 10.7498/aps.49.282
    [13] FANG QUAN-YU, CAI WEI, ZOU YU, LI PING. A GENERALIZED BETHE ANALYTIC FORMULA: DIPOLE-EXCITED COLLISION STRENGTHS AND CORRESPONDING RATE COEFFICIENTS IN Au50+. Acta Physica Sinica, 1998, 47(10): 1612-1620. doi: 10.7498/aps.47.1612
    [14] YU BAO-LONG, ZHU CONG-SHAN, GAN FU-XI. MEASUREMENT ON THE THERMO OPTIC COEFFICIENT dn/dT OF SEMICONDUCTOR PbS NANOPARTICLES AND THE STUDY ON THEIR OPTICAL LIMITING EFFECTS. Acta Physica Sinica, 1997, 46(12): 2394-2400. doi: 10.7498/aps.46.2394
    [15] FANG QUAN-YU, CAI WEI, ZOU YU, LI PING, XU ZHI-JIN. EXCITATION COLLISION STRENGTH AND RATE-COEFFICIENT OF Auq+(q=47,55) IONS BY ELECTRON IMPACT. Acta Physica Sinica, 1997, 46(3): 448-457. doi: 10.7498/aps.46.448
    [16] SHI ZI-KANG, JIANG AI-DONG, YE HAI-TAO, CHEN CHUANG-TIAN. ELECTRICAL PROPERTIES OF A NEW PYROELECTRIC BARIUM METABORATE CRYSTAL IN LOW TEMPERA-TURE PHASES AND ITS POTENTIAL APPLICA-TION IN INFRARED PYROELECTRIC DETECTOR. Acta Physica Sinica, 1985, 34(1): 140-144. doi: 10.7498/aps.34.140
    [17] WU TE-CHAN, WANG JEN-HUI. THE THERMAL DIFFUSE X-RAY SCATTERING AND ELASTIC CONSTANTS OF ZINC. Acta Physica Sinica, 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
    [18] CHEN CHI, LI HUA-LIN, DIN JIA-YEN. ON THE INTENSITY OF MUTUALLY-INDUCED X-RAY FLUORESCENCE BETWEEN ELEMENTS. Acta Physica Sinica, 1963, 19(11): 727-734. doi: 10.7498/aps.19.727
    [19] HAO BAI-LIN. SURFACE IMPEDANCE AND TRANSPARENT COEFFICIENT OF METALS IN THE INFRARED. Acta Physica Sinica, 1961, 17(10): 453-464. doi: 10.7498/aps.17.453
    [20] . Acta Physica Sinica, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
Metrics
  • Abstract views:  308
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2024
  • Accepted Date:  03 January 2025
  • Available Online:  25 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回
Baidu
map