Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-photon scattering under control of artificial gauge field

WANG Runting WANG Xudong MEI Feng XIAO Liantuan JIA Suotang

Citation:

Single-photon scattering under control of artificial gauge field

WANG Runting, WANG Xudong, MEI Feng, XIAO Liantuan, JIA Suotang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The mechanism of controlling single-photon scattering in a hybrid system consisting of superconducting qubits coupled to aSu-Schrieffer-Heeger (SSH) topological photonic lattice is investigated under the influence of an artificial gauge field. This research is driven by the growing interest in the intersection between quantum optics and condensed matter physics, particularly in the field of topological quantum optics, where the robustness of photon transport against defects and impurities can be used for quantum information processing. To achieve this, a theoretical model, which incorporates the phase of the artificial gauge field into the coupling between superconducting qubits and the SSH photonic lattice, is developed in this work. The analytical expressions for the reflection and transmission amplitudes of single photons are derived by using the probability-amplitude method. The results show that the artificial gauge field can effectively control single photon scattering in both the upper energy band and the lower energy band of the SSH lattice, thereby enabling total transmission in the upper band and total reflection in the lower band. This band-dependent scattering behavior exhibits a high degree of symmetry with respect to the lattice momentum and energy bands. Importantly, the reflection coefficient can be made independent of the lattice coupling strength and dependent solely on the topological properties of the lattice. This finding suggests a robust method of detecting topological invariants in photonic lattices. Furthermore, our analysis is extended to various coupling configurations between superconducting qubits and the photonic lattice, highlighting the versatility of the artificial gauge field in manipulating photon transport. These findings not only provide new insights into the control of photon transport in topological photonic lattices, but also open the door to the development of novel quantum optical devices and robust quantum information processing platforms.
  • 图 1  超导比特耦合到SSH拓扑光子晶格体系中的单光子相干输运示意图 (a)超导比特同时耦合到元胞内的两个格点; (b)超导比特同时耦合到元胞间的两个格点, $\theta $为外加人工规范场相位

    Figure 1.  Schematic illustration of single-photon coherent transport in a system of superconducting qubits coupled to an SSH topological photonic lattice system: (a) Superconducting qubit simultaneously coupled to two lattice sites within the same unit cell; (b) superconducting qubit simultaneously coupled to two lattice sites across different unit cells, $\theta $ is the phase of the applied artificial gauge field.

    图 2  SSH 拓扑光子晶格的能带结构与拓扑特性 (a)能量$E$关于波矢$k$的示意图, 其他参数设定为$\delta = 0.2$, $J = 1$; (b) SSH光子晶格拓扑缠绕示意图, 其中$\delta = 0.2$和$\delta = - 0.2$

    Figure 2.  Energy band structure and topological properties of the SSH topological photonic lattice: (a) Schematic diagram of energy $E$ as a function of $k$. Other parameters are set to $\delta = 0.2$, $J = 1$; (b) schematic diagram of the SSH photonic lattice topological winding, for $\delta = 0.2$ and $\delta = - 0.2$.

    图 3  不同人工规范场相位$\theta $下, 反射系数$R$随$k$和$\delta $的变化(AB构型) (a)—(e)单光子能量为$ {E_ + } $时, 反射系数${R_ + }$随$\theta $的变化; (f)—(j)单光子能量为$ {E_ - } $时, 反射系数$ {R_ - } $随$\theta $的变化, 其他参数设置为$\varDelta = 0$, ${J_{\text{a}}} = {J_{\text{b}}} = J = 1$; 人工规范场相位$\theta $的具体取值 (a), (f) $\theta = 0$; (b), (g) $\theta = {\text{π}}/4$; (c), (h) $\theta = {\text{π}}/2$; (d), (i) $\theta = 3{\text{π}}/4$; (e), (j) $\theta = {\text{π}}$

    Figure 3.  Variation of the reflection coefficient $R$ with $k$ and $\delta $ for different artificial gauge field phases $\theta $(AB configuration): (a)–(e) ${R_ + }$ as a function of $\theta $ for a single-photon energy $ {E_ + } $; (f)–(j) $ {R_ - } $ as a function of $\theta $ for a single-photon energy $ {E_ - } $. Other parameters are set to $\varDelta = 0$, ${J_{\text{a}}} = {J_{\text{b}}} = J = 1$. Specific values of the artificial gauge field phase $\theta $ are as follows: (a), (f) $\theta = 0$; (b), (g) $\theta = {\text{π}}/4$; (c), (h) $\theta = {\text{π}}/2$; (d), (i) $\theta = 3{\text{π}}/4$; (e), (j) $\theta = {\text{π}}$.

    图 4  反射系数$R$随$\delta $的变化 (a)—(c)单光子能量为$ {E_ + } $时, 反射系数$R$随$\delta $的变化; (d)—(f)单光子能量为$ {E_ - } $时, 反射系数$R$随$\delta $的变化; 其他参数设置为$\varDelta = 0$, $k = \pi $, ${J{\mathrm{a}}} = {J{\mathrm{b}}} = J = 1$. 人工规范场相位$\theta $具体取值为 (a), (d) $\theta = 0$; (b), (e) $\theta = \pi $; (c), (f) $\theta = \pi /2$

    Figure 4.  Variation of reflection coefficient $R$ with $\delta $: (a)–(c) $R$ as a function of $\delta $ for a single photon energy $ {E_ + } $; (d)–(f) $R$ as a function of $\delta $ for a single photon energy $ {E_ - } $; Other parameters are set to $\varDelta = 0$, $k = \pi $, ${J{\mathrm{a}}} = {J_{\text{b}}} = J = 1$. Specific values of the artificial gauge field phase $\theta $ are as follows: (a), (d) $\theta = 0$; (b), (e) $\theta = \pi $; (c), (f) $\theta = \pi /2$.

    图 5  不同人工规范场相位$\theta $下, 反射系数$R$随$k$和$\delta $的变化(BA构型) (a)—(e)单光子能量为$ {E_ + } $时, 反射系数${R_ + }$随$\theta $的变化; (f)—(j)单光子能量为$ {E_ - } $时, 反射系数$ {R_ - } $随$\theta $的变化, 其他参数设置为$\varDelta = 0$, ${J_{\text{a}}} = {J_{\text{b}}} = J = 1$; 人工规范场相位$\theta $的具体取值为 (a), (f) $\theta = 0$; (b), (g) $\theta = {\text{π}}/4$; (c), (h) $\theta = {\text{π}}/2$; (d), (i) $\theta = 3{\text{π}}/4$; (e), (j) $\theta = {\text{π}}$

    Figure 5.  Variation of the reflection coefficient $R$ with $k$ and $\delta $ for different artificial gauge field phases $\theta $(AB configuration): (a)–(e) ${R_ + }$ as a function of $\theta $ for a single-photon energy $ {E_ + } $; (f)–(j) $ {R_ - } $ as a function of $\theta $ for a single-photon energy $ {E_ - } $. Other parameters are set to $\varDelta = 0$, ${J_{\text{a}}} = {J_{\text{b}}} = J = 1$. Specific values of the artificial gauge field phase $\theta $ are as follows: (a), (f) $\theta = 0$; (b), (g) $\theta = {\text{π}}/4$; (c), (h) $\theta = {\text{π}}/2$; (d), (i) $\theta = 3{\text{π}}/4$; (e), (j) $\theta = {\text{π}}$.

    Baidu
  • [1]

    Sheremet A S, Petrov M I, Iorsh I V, Poshakinskiy A V, Poddubny A N 2023 Rev. Mod. Phys. 95 015002Google Scholar

    [2]

    Mehrabad M J, Mittal S, Hafezi M 2023 Phys. Rev. A 108 040101Google Scholar

    [3]

    Yan Q, Hu X, Fu Y, Lu C, Fan C, Liu Q, Feng X, Sun Q, Gong Q 2021 Adv. Opt. Mater. 9 2001739Google Scholar

    [4]

    Lumer Y, Bandres M A, Heinrich M, Maczewsky L J, Herzig-Sheinfux H, Szameit A, Segev M 2019 Nat. Photonics 13 339Google Scholar

    [5]

    Zhou L, Gong Z R, Liu Y, Sun C P, Franco N 2008 Phys. Rev. Lett. 101 100501Google Scholar

    [6]

    Zhou L, Yang L P, Li Y, Sun C P 2013 Phys. Rev. Lett. 111 103604Google Scholar

    [7]

    Kannan B, Almanakly A, Sung Y, Paolo A D, Rower D A, Braumülleret J, Melville A, Niedzielski B M, Karamlou A, Serniak K, Vepsäläinen A, Schwartz M E, Yoder J L, Winik R, Wang J I J, Orlando T P, Gustavsson S, Grover J A, Oliver W D 2023 Nat. Phys. 19 394Google Scholar

    [8]

    Xu H S, Jin L 2022 Phys. Rev. Res. 4 L032015Google Scholar

    [9]

    Xu H S, Jin L 2023 Phys. Rev. Res. 5 L042005Google Scholar

    [10]

    Zhou L, Dong H, Liu Y, Sun C P, Nori F 2008 Phys. Rev. A 78 063827Google Scholar

    [11]

    Liao J Q, Huang J F, Liu Y, Kuang L M, Sun C P 2009 Phys. Rev. A 80 014301Google Scholar

    [12]

    Liao J Q, Gong Z R, Zhou L, Liu Y, Sun C P, Nori F 2010 Phys. Rev. A 81 042304Google Scholar

    [13]

    Zhou L, Kuang L M 2010 Phys. Rev. A 82 042113Google Scholar

    [14]

    Liao J Q, Cheung H K, Law C K 2012 Phys. Rev. A 85 025803Google Scholar

    [15]

    Zhou L, Chang Y, Dong H, Kuang L M, Sun C P 2012 Phys. Rev. A 85 013806Google Scholar

    [16]

    Liao J Q, Law C K 2013 Phys. Rev. A 87 043809Google Scholar

    [17]

    Wang Z H, Zhou L, Li Y, Sun C P 2014 Phys. Rev. A 89 053813Google Scholar

    [18]

    Xu X W, Chen A X, Li Y, Liu Y 2017 Phys. Rev. A 95 063808Google Scholar

    [19]

    Jin L 2018 Phys. Rev. A 98 022117Google Scholar

    [20]

    Wang Z, Du L, Li Y, Liu Y 2019 Phys. Rev. A 100 053809Google Scholar

    [21]

    Jin L, Song Z 2021 Chinese Phys. Lett. 38 024202Google Scholar

    [22]

    Nie W, Shi T, Nori F, Liu Y 2021 Phys. Rev. Appl. 15 044041Google Scholar

    [23]

    Yin X L, Liu Y H, Huang J F, Liao J Q 2022 Phys. Rev. A 106 013715Google Scholar

    [24]

    Tang J S, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, Xia K 2022 Phys. Rev. Lett. 128 203602Google Scholar

    [25]

    Zhou J, Yin X L, Liao J Q 2023 Phys. Rev. A 107 063703Google Scholar

    [26]

    Xu H S, Jin L 2023 Phys. Rev. Res. 5 L042005Google Scholar

    [27]

    Xu H S, Jin L 2024 Phys. Rev. Res. 6 L022006Google Scholar

    [28]

    Bello M, Platero G, Cirac J I, González-Tudela A 2019 Sci. Adv. 5 eaaw0297Google Scholar

    [29]

    Kim E, Zhang X, Ferreira V S, Banker J, K. Iverson J, Sipahigil A, Bello M, González-Tudela A, Mirhosseini M, Painter O 2021 Phys. Rev. X 11 011015

    [30]

    Joshi C, Yang F, Mirhosseini M 2023 Phys. Rev. X 13 021039

    [31]

    Cheng W, Wang Z, Liu Y 2022 Phys. Rev. A 106 033522Google Scholar

  • [1] HAO Jiaxin, XU Zhihao. Localization transition in a two-particle system with complex interaction modulation. Acta Physica Sinica, doi: 10.7498/aps.74.20241691
    [2] Cui Na-Wei, Gao Jia-Xin, Dong Hui-Ru, Li Chuan-Qi, Luo Xiao-Bing, Xiao Jin-Peng. Topological superconducting phase competition in magnetic atomic rings. Acta Physica Sinica, doi: 10.7498/aps.73.20241095
    [3] Wang Zi-Yao, Chen Fu-Jia, Xi Xiang, Gao Zhen, Yang Yi-Hao. Non-reciprocal topological photonics. Acta Physica Sinica, doi: 10.7498/aps.73.20231850
    [4] Kun Yang. Geometric degrees of freedom and graviton-like excitations in fractional quantum Hall liquids. Acta Physica Sinica, doi: 10.7498/aps.73.20240994
    [5] Guan Xin, Chen Gang. Topological nonmediocre nodes on two-leg superconducting quantum circuits. Acta Physica Sinica, doi: 10.7498/aps.72.20230152
    [6] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.71.20220029
    [7] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.71.20220353
    [8] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, doi: 10.7498/aps.69.20200415
    [9] Li Jian. Theory of topological superconductivity based on Yu-Shiba-Rusinov states. Acta Physica Sinica, doi: 10.7498/aps.69.20200831
    [10] Liang Qi-Feng, Wang Zhi, Kawakami Takuto, Hu Xiao. Exploration of Majorana bound states in topological superconductors. Acta Physica Sinica, doi: 10.7498/aps.69.20190959
    [11] Gu Kai-Yuan, Luo Tian-Chuang, Ge Jun, Wang Jian. Superconductivity in topological materials. Acta Physica Sinica, doi: 10.7498/aps.69.20191627
    [12] Yan Zhong-Bo. Higher-order topological insulators and superconductors. Acta Physica Sinica, doi: 10.7498/aps.68.20191101
    [13] Wang Hong-Fei, Xie Bi-Ye, Zhan Peng, Lu Ming-Hui, Chen Yan-Feng. Research progress of topological photonics. Acta Physica Sinica, doi: 10.7498/aps.68.20191437
    [14] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, doi: 10.7498/aps.68.20191317
    [15] Wang Zi, Zhang Dan-Mei, Ren Jie. Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems. Acta Physica Sinica, doi: 10.7498/aps.68.20191463
    [16] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, doi: 10.7498/aps.67.20181857
    [17] Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica, doi: 10.7498/aps.67.20180235
    [18] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, doi: 10.7498/aps.66.227804
    [19] Sun Xiao-Chen, He Cheng, Lu Ming-Hui, Chen Yan-Feng. Topological properties of artificial bandgap materials. Acta Physica Sinica, doi: 10.7498/aps.66.224203
    [20] Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells. Acta Physica Sinica, doi: 10.7498/aps.66.227802
Metrics
  • Abstract views:  317
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2025
  • Accepted Date:  11 February 2025
  • Available Online:  21 February 2025

/

返回文章
返回
Baidu
map