Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission of low energy electrons through a polyethylene terephthalate 800-nm diameter nanocapillary

LI Pengfei LIU Wanqi HA Shuai PAN Yuzhou FAN Xuhong DU Zhanhui WAN Chengliang CUI Ying YAO Ke MA Yue YANG Zhihu SHAO Caojie Reinhold Schuch LU Di SONG Yushou ZHANG Hongqiang CHEN Ximeng

Citation:

Transmission of low energy electrons through a polyethylene terephthalate 800-nm diameter nanocapillary

LI Pengfei, LIU Wanqi, HA Shuai, PAN Yuzhou, FAN Xuhong, DU Zhanhui, WAN Chengliang, CUI Ying, YAO Ke, MA Yue, YANG Zhihu, SHAO Caojie, Reinhold Schuch, LU Di, SONG Yushou, ZHANG Hongqiang, CHEN Ximeng
cstr: 32037.14.aps.74.20241196
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The transmission of 2-keV electrons through a polyethylene terephthalate (PET) nanocapillary with a diameter of 800 nm and a length of 10 μm is studied. The transmitted electrons are detected using microchannel plate (MCP) with a phosphor screen. It is found that the transmission rate for the transmitted electrons with the incident energy can reach up to 10 % for an aligned capillary in the beam direction, but drops to less than 1% when the tilt angle exceeds the geometrical allowable angle. The transmitted electrons with the incident energy do not move with change of tilt angle, so the incident electrons are not guided in the insulating capillary, which is different from the scenario of positive ions. In the final stage of the transmission, the angular distribution of the transmitted electrons within the geometrical allowable angle splits into two peaks along the observation angle perpendicular to the tilt angle. The time evolution of the transmitted full angular distribution shows that when the beam turns on, the transmission profile forms a single peak. As the incident charge and time accumulate, the transmission profile starts to stretch in the plane perpendicular to the tilt angle and gradually splits into two peaks. When the tilt angle of the nanocapillary exceeds the geometrical allowable angle, this splitting tends to disappear. Simulation of the charge deposition in the capillary directly exposed to the beam indicates the formation of positive charge patches, which are not conducive to guidance, as seen in the case of positive ions. According to the simulation results, we can explain our data. Then, the possible reasons for the splitting the transmission angular profiles are discussed.
      Corresponding author: CUI Ying, cuiying@lzu.edu.cn ; ZHANG Hongqiang, zhanghq@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1732269, 12375262), the Fundamental Research Funds for the Central Universities of Ministry of Education, China (Grant Nos. lzujbky-2021-sp41, 3072023CFJ1506), the Swedish Foundation for International Cooperation in Research and Higher Education (Grant No. IB2018-8071), and the Key Projects of the State Administration for Foreign Experts.
    [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [2]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [3]

    Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901(R

    [4]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [5]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instr. Meth. Phys. Res. B 258 145Google Scholar

    [6]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X. A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B. 18 2739Google Scholar

    [7]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar

    [8]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar

    [9]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [12]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [13]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [14]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [15]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [16]

    Giglio E, Guillous S, Cassimi A, Zhang H Q, Nagy G U L, Tőkési K 2017 Phys. Rev. A 95 030702(R

    [17]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [18]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [19]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [20]

    万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, Reinhold Schuch, 张红强 2024 73 104101Google Scholar

    Wan C L, Pan Y Z, Zhu L P, Zhang H W, Zhao Z Y, Yuan H, Li P F, Fan X H, Sun W S, Du Z H, Chen Q, Cui Y, Liao T F, Wei X H, Wang T Q, Chen X M, Li G P, Schuch R, Zhang H Q 2024 Acta Phys. Sin. 73 104101Google Scholar

    [21]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902Google Scholar

    [22]

    Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lv X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901Google Scholar

    [23]

    Chen L, Lv X Y, Jia J J, Ji M C, Zhou P, Sun G Z, Wang J, Chen Y F, Xi F Y, Cui Y, Shao J X, Qiu X Y, Guo Y L, Chen X M 2011 Phys. B: At. Mol. Opt. Phys. 44 045203Google Scholar

    [24]

    Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [25]

    哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2020 69 094101Google Scholar

    Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Niu B, Wei L, Zhang Q, Liu Z L, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2020 Acta Phys. Sin. 69 094101Google Scholar

    [26]

    刘中林, 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 张琦, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2021 原子核物理评论 38 95Google Scholar

    Liu Z L, Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Zhang Q, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2021 Nucl. Phys. Rev. 38 95Google Scholar

    [27]

    Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901(RGoogle Scholar

    [28]

    Milosavljević A R, Jureta J, Víkor G, Pešić Z D, Šević D, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P 2009 Europhys. Lett. 86 23001Google Scholar

    [29]

    Milosavljević A, Schiessl K, Lemell C, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P, Burgdörfer J 2012 Nucl. Instr. Meth. Phys. Res. B 279 190.Google Scholar

    [30]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [31]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [32]

    Dassanayake B S, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 298 1Google Scholar

    [33]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 317 105Google Scholar

    [34]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2016 Nucl. Instr. Meth. Phys. Res. B 382 67Google Scholar

    [35]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703Google Scholar

    [36]

    Vokhmyanina K A, Kubankin A S, Myshelovka L V, Zhang H Q, Kaplii A A, Sotnikova V S, Zhukova M A 2020 J. Instrum. 15 C04003Google Scholar

    [37]

    Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701(R

    [38]

    Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707Google Scholar

    [39]

    Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701Google Scholar

    [40]

    Stolterfoht N, Tanis J A 2018 Nucl. Instr. Meth. Phys. Res. B 421 32Google Scholar

    [41]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [42]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万城亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [43]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [44]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 084104Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar

    [45]

    周鹏, 万城亮, 袁华, 程紫东, 李鹏飞, 张浩文, 崔莹, 张红强, 陈熙萌 2023 强激光与粒子束 35 026001Google Scholar

    Zhou P, Wan C L, Yuan H, Cheng Z D, Li P F, Zhang H W, Cui Y, Zhang H Q, Chen X M 2023 High Pow. Laser Part. Beams 35 026001Google Scholar

    [46]

    Data sheets of Mylar (http://www.dupontteijinfilms.com

    [47]

    Hovington P, Drouin D, Gauvin R. 1997 Scanning 19 1Google Scholar

    [48]

    Drouin D, Couture A R, Joly D, Taster X, Aimez V, Gauvin R 2007 Scanning 29 92Google Scholar

    [49]

    Demers H, Poirrier-Demers N, Couture A R, Joly D, Guilmain M, Jonge N D, Drouin D 2011 Scanning 33 135Google Scholar

    [50]

    Joy D C, Luo S 1989 Scanning 11 176Google Scholar

    [51]

    Lowney J R 1996 Scanning 18 301Google Scholar

    [52]

    Reimer L 1998 Scanning Electron Microscopy (2nd Ed.) (Berlin: Springer) pp57–134

  • 图 1  实验装置示意图, 定义微孔轴向与电子束之间的倾角ψ, 以及电子束的观测角度ϕθ

    Figure 1.  A schematic drawing of the experimental setup, the tilt angle ψ between the axes of capillaries and the electron beam, the observation angles ϕ and θ given with respect to the electron beam are defined.

    图 2  2 keV电子的二维穿透电子分布图像和对应的ϕθ平面上的投影

    Figure 2.  A primary beam profile of 2 keV electrons and the corresponding projections on the planes of ϕ and θ.

    图 3  不同倾角下2 keV电子在静止状态下通过PET纳米微孔的二维穿透角分布 (a)二维穿透角分布; (b) θ平面上的穿透角分布投影

    Figure 3.  Two-dimensional penetration angle distribution of 2 keV electrons through PET nanopores in a stationary state at different inclination angles: (a) Two-dimensional penetration angle distribution; (b) θ plane penetration angle distribution projection.

    图 4  稳态下2 keV电子的电子穿透率与倾角ψ的关系, 红色虚线表示几何穿透角

    Figure 4.  The transmission rate of 2 keV electrons in stationary state as a function of ψ, the red dash lines stand for the geometrical transmission angle.

    图 5  充电过程中2 keV电子在0°倾角下通过 PET 纳米微孔的穿透全角分布随时间的演变 (a)电子穿透率的演变; (b)二维穿透角分布图像及投影图

    Figure 5.  The time evolution of transmitted angular distributions of 2 keV electrons at the tilt angle of 0° through PET nanocapillaries during the charging process: (a) The evolution of electron transmission rates; (b) projections of the transmitted angular distributions.

    图 6  在0°入射时, 随着充电时间的累积, θ平面上的上峰(a)和下峰(b)位置的演变

    Figure 6.  At 0° incidence, as the charge time accumulates, the evolution of upper (a) and lower (b) peak positions on plane, respectively.

    图 7  CASINO使用的PET样品的三维模型

    Figure 7.  The 3-dimensional model of PET sample used in CASINO.

    图 8  2 keV电子在4°入射角下造成PET材料表面电荷沉积的计算结果 (a)入射电子沉积强度的二维分布图及其(b)在深度上的强度分布投影图; (c)表面空穴强度的二维分布图及其(d)在深度上的强度分布投影图

    Figure 8.  Calculated results of charge deposition on the surface of PET material caused by 2 keV electrons at an incidence angle of 4°: (a) The two-dimensional distribution of the intensity of the incident electron deposition and (b) its intensity distribution projection at depth; (c) the two-dimensional distribution of the surface hole intensity, and (d) its intensity distribution projection at depth.

    图 9  倾角为0°时, 穿透电子分布示意图

    Figure 9.  Schematic diagram of the distribution of transmitted electrons at 0° tilt angle.

    Baidu
  • [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [2]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [3]

    Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901(R

    [4]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [5]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instr. Meth. Phys. Res. B 258 145Google Scholar

    [6]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X. A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B. 18 2739Google Scholar

    [7]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar

    [8]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar

    [9]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [12]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [13]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [14]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [15]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [16]

    Giglio E, Guillous S, Cassimi A, Zhang H Q, Nagy G U L, Tőkési K 2017 Phys. Rev. A 95 030702(R

    [17]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [18]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [19]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [20]

    万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, Reinhold Schuch, 张红强 2024 73 104101Google Scholar

    Wan C L, Pan Y Z, Zhu L P, Zhang H W, Zhao Z Y, Yuan H, Li P F, Fan X H, Sun W S, Du Z H, Chen Q, Cui Y, Liao T F, Wei X H, Wang T Q, Chen X M, Li G P, Schuch R, Zhang H Q 2024 Acta Phys. Sin. 73 104101Google Scholar

    [21]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902Google Scholar

    [22]

    Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lv X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901Google Scholar

    [23]

    Chen L, Lv X Y, Jia J J, Ji M C, Zhou P, Sun G Z, Wang J, Chen Y F, Xi F Y, Cui Y, Shao J X, Qiu X Y, Guo Y L, Chen X M 2011 Phys. B: At. Mol. Opt. Phys. 44 045203Google Scholar

    [24]

    Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [25]

    哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2020 69 094101Google Scholar

    Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Niu B, Wei L, Zhang Q, Liu Z L, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2020 Acta Phys. Sin. 69 094101Google Scholar

    [26]

    刘中林, 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 张琦, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2021 原子核物理评论 38 95Google Scholar

    Liu Z L, Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Zhang Q, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2021 Nucl. Phys. Rev. 38 95Google Scholar

    [27]

    Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901(RGoogle Scholar

    [28]

    Milosavljević A R, Jureta J, Víkor G, Pešić Z D, Šević D, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P 2009 Europhys. Lett. 86 23001Google Scholar

    [29]

    Milosavljević A, Schiessl K, Lemell C, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P, Burgdörfer J 2012 Nucl. Instr. Meth. Phys. Res. B 279 190.Google Scholar

    [30]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [31]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [32]

    Dassanayake B S, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 298 1Google Scholar

    [33]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 317 105Google Scholar

    [34]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2016 Nucl. Instr. Meth. Phys. Res. B 382 67Google Scholar

    [35]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703Google Scholar

    [36]

    Vokhmyanina K A, Kubankin A S, Myshelovka L V, Zhang H Q, Kaplii A A, Sotnikova V S, Zhukova M A 2020 J. Instrum. 15 C04003Google Scholar

    [37]

    Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701(R

    [38]

    Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707Google Scholar

    [39]

    Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701Google Scholar

    [40]

    Stolterfoht N, Tanis J A 2018 Nucl. Instr. Meth. Phys. Res. B 421 32Google Scholar

    [41]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [42]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万城亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [43]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [44]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 084104Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar

    [45]

    周鹏, 万城亮, 袁华, 程紫东, 李鹏飞, 张浩文, 崔莹, 张红强, 陈熙萌 2023 强激光与粒子束 35 026001Google Scholar

    Zhou P, Wan C L, Yuan H, Cheng Z D, Li P F, Zhang H W, Cui Y, Zhang H Q, Chen X M 2023 High Pow. Laser Part. Beams 35 026001Google Scholar

    [46]

    Data sheets of Mylar (http://www.dupontteijinfilms.com

    [47]

    Hovington P, Drouin D, Gauvin R. 1997 Scanning 19 1Google Scholar

    [48]

    Drouin D, Couture A R, Joly D, Taster X, Aimez V, Gauvin R 2007 Scanning 29 92Google Scholar

    [49]

    Demers H, Poirrier-Demers N, Couture A R, Joly D, Guilmain M, Jonge N D, Drouin D 2011 Scanning 33 135Google Scholar

    [50]

    Joy D C, Luo S 1989 Scanning 11 176Google Scholar

    [51]

    Lowney J R 1996 Scanning 18 301Google Scholar

    [52]

    Reimer L 1998 Scanning Electron Microscopy (2nd Ed.) (Berlin: Springer) pp57–134

  • [1] Wan Cheng-Liang, Pan Yu-Zhou, Zhu Li-Ping, Li Peng-Fei, Zhang Hao-Wen, Zhao Zhuo-Yan, Yuan Hua, Fan Xu-Hong, Sun Wen-Sheng, Du Zhan-Hui, Chen Qian, Cui Ying, Liao Tian-Fa, Wei Xiao-Hui, Wang Tian-Qi, Chen Xi-Meng, Li Gong-Ping, Reinhold Schuch, Zhang Hong-Qiang. Production and measurement of MeV proton microbeams in atmospheric environment based on glass capillary. Acta Physica Sinica, 2024, 73(10): 104101. doi: 10.7498/aps.73.20240301
    [2] Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua, Wang Xiu-Ming. Elastic wave propagation characteristics in unsaturated double-porosity medium under capillary pressure. Acta Physica Sinica, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [3] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin. A new type of micro-X-ray diffractometer focused by polycapillary optics. Acta Physica Sinica, 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [5] Bai Xiong-Fei, Niu Shu-Tong, Zhou Wang, Wang Guang-Yi, Pan Peng, Fang Xing, Chen Xi-Meng, Shao Jian-Xiong. Dynamic evolution of 20-keV H+ transmitted through polycarbonate nanocapillaries. Acta Physica Sinica, 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [6] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [7] Wan Cheng-Liang, Li Peng-Fei, Qian Li-Bing, Jin Bo, Song Guang-Yin, Gao Zhi-Min, Zhou Li-Hua, Zhang Qi, Song Zhang-Yong, Yang Zhi-Hu, Shao Jian-Xiong, Cui Ying, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of slow electrons transmitting through straight glass capillary and tapered glass capillary. Acta Physica Sinica, 2016, 65(20): 204103. doi: 10.7498/aps.65.204103
    [8] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [9] Li Xing-Ji, Lan Mu-Jie, Liu Chao-Ming, Yang Jian-Qun, Sun Zhong-Liang, Xiao Li-Yi, He Shi-Yu. The influence of bias conditions on ionizing radiation damage of NPN and PNP transistors. Acta Physica Sinica, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [10] Yun Mei-Juan, Zheng Wei, Li Yun-Bao, Li Yu. Fractal analysis of Herschel-Bulkley fluid flow in a capillary. Acta Physica Sinica, 2012, 61(16): 164701. doi: 10.7498/aps.61.164701
    [11] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [12] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [13] Chen Yi-Feng, Chen Xi-Meng, Lou Feng-Jun, Xu Jin-Zhang, Shao Jian-Xiong, Sun Guang-Zhi, Wang Jun, Xi Fa-Yuan, Yin Yong-Zhi, Wang Xing-An, Xu Jun-Kui, Cui Ying, Ding Bao-Wei. Guiding of 60 keV O+ ions through Al2O3 nanocapillaries with two different diameters. Acta Physica Sinica, 2010, 59(1): 222-226. doi: 10.7498/aps.59.222
    [14] Guo Tie-Ying, Lou Shu-Qin, Li Hong-Lei, Jian Shui-Sheng. Capillary drawing for fabrication of photonic crystal fibers: theoretical calculation and experiments. Acta Physica Sinica, 2009, 58(7): 4724-4730. doi: 10.7498/aps.58.4724
    [15] Li Wei-Qin, Zhang Hai-Bo. Negative charging process of a grounded insulating thin film under low-energy electron beam irradiation. Acta Physica Sinica, 2008, 57(5): 3219-3229. doi: 10.7498/aps.57.3219
    [16] Yu Jiang-Zhou, Feng Hao, Sun Wei-Guo. Studies on the momentum transfer cross sections for low-energy electron scattering by nitrogen molecule. Acta Physica Sinica, 2008, 57(7): 4143-4147. doi: 10.7498/aps.57.4143
    [17] Cao Shi-Ying, Wang Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Spectrum evolution of filamentation restricted by capillary in high pressure gas. Acta Physica Sinica, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [18] Wei Zhong-Chao, Dai Qiao-Feng, Wang He-Zhou. Spectral properties of fcc-like cylindrical colloidal crystals. Acta Physica Sinica, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [19] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [20] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
Metrics
  • Abstract views:  721
  • PDF Downloads:  22
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2024
  • Accepted Date:  19 October 2024
  • Available Online:  03 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回
Baidu
map