-
本文采用玻璃毛细管产生了大气环境中工作的2.5 MeV质子外束微束, 并对束斑直径及能量分布随玻璃毛细管与束流方向之间角度(倾角)变化进行测量. 测量结果表明, 在玻璃毛细管轴向与束流方向一致时(倾角为0°), 产生的微束中存在保持初始入射能量的直接穿透部分以及散射部分, 其中直接穿透的质子占比最大, 束斑直径也最大. 随着玻璃毛细管倾角的增大, 当其大于几何张角时, 束斑直径变小, 产生的微束全部为能量减小的散射部分, 直接穿透质子消失. 我们对质子在玻璃毛细管内传输时的内壁散射过程进行了模拟计算及离子轨迹分析, 发现大角度的散射部分决定了形成的外束微束斑外围轮廓, 而束斑中心区域由不与毛细管内壁产生任何作用的直接穿透离子构成, 其大小由玻璃毛细管出口直径以及几何容许张角决定. 采用玻璃毛细管产生的外束微束具有产生简单廉价, 微束区域定位简单的特点, 有望在辐射生物学、医学、材料等领域得到广泛应用.
Traditionally, ion microbeam is produced by focusing or/and collimating to reduce the beam size to submicron level. The traditional setup for producing the microbeam consists of an expensive focusing and collimating system with a large space, based on electromagnetic fields. Meanwhile, the microbeam obtained through pure collimation of metal micro-tubes is limited by the fabrication processing, i.e. the size of beam spot is largely limited to a few microns and its manufacture is not as simple as that of a glass capillary. Inspired by early studies of the guiding effect, the use of inexpensive and easy-to-make glass capillaries as the tool for ion external microbeam production has become a new direction. In this work, we use a glass capillary with an open outlet (108 μm in diameter), which serves as a vacuum differential and collimating component, to produce a 2.5 MeV-proton microbeam directly from the linear accelerator into the atmosphere for measurements. We measure the beam spot diameter and energy distribution of the microbeam as a function of the tilt angle of the capillary. We also conduct calculations and ion trajectory analysis on the scattering process of 2.5 MeV protons on the inner walls. The measurement results show that when the tilt angle is around 0°, there are a direct transmission part that maintains the initial incident energy, and a scattering part with the energy loss in the microbeam. It is found that the proportion of directly transmitted protons and the beam spot size are highest near zero tilt angle. As the tilt angle increases, the beam spot diameter decreases; when the tilt angle is greater than the geometric angle, all the microbeams come from the scattering with the energy loss. The simulation combined with the ion trajectory analysis based on the scattering process can explain the experimental results. It is found that the large angle scattering determines the entire external microbeam spot, and the central region of the beam spot is composed of directly penetrating ions, whose size is determined by the geometric shape of the glass capillary, i.e. the outlet diameter and aspect ratio. The natural advantage of producing external micobeames easily and inexpensively through glass capillaries is their relative safety and stable operation, and the last but not least point is to simply locate the microbeams on the sample without complex diagnostic tools. The microbeams are expected to be widely used in fields such as radiation biology, medicine, and materials. -
Keywords:
- ions external microbeam /
- MeV protons /
- conical glass capillary
[1] Grime G W, Abraham M H, Marsh M A 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 181 66Google Scholar
[2] 窦彦昕 2018 博士学位论文(哈尔滨: 哈尔滨工业大学)
Dou Y X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology
[3] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar
[4] Nebiki T, Yamamoto T, Narusawa T 2003 J. Vac. Sci. Technol. A 21 1671Google Scholar
[5] Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar
[6] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar
[7] Cassimi A, Muranaka T, Maunoury L, Lebius H, Manil B, Huber B A, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Nebiki T, Narusawa T 2008 Int. J. Nanotechnol. 5 809Google Scholar
[8] Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902Google Scholar
[9] Chen J, Xue Y L, Liu J L, Wu Y H, Ruan F F, Wang W, Yu D Y, Cai X H 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 281 26Google Scholar
[10] Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915Google Scholar
[11] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res. Sect. B 258 145Google Scholar
[12] Wang Y Y, Li D H, Zhao Y T, Xiao G Q, Xu Z F, Li F L, Chen X M 2009 J. Phys. Conf. Ser. 194 132032Google Scholar
[13] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar
[14] Wang X, Zhao Y T, Wang Y Y, Cheng R, Li D H, Zhang S F, Xiao G Q 2011 Phys. Scr. 2011 014046Google Scholar
[15] Juhász Z, Kovács S T S, Herczku P, Rácz R, Biri S, Rajta I, Gál G A B, Szilasi S Z, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 279 177Google Scholar
[16] Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar
[17] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lü X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902Google Scholar
[18] Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lü X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901Google Scholar
[19] Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901Google Scholar
[20] Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar
[21] Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar
[22] Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar
[23] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703Google Scholar
[24] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar
[25] Stolterfoht N, Tanis J 2018 Nucl. Instrum. Metods Phys. Res. Sect. B 421 32Google Scholar
[26] Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701Google Scholar
[27] Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707Google Scholar
[28] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103Google Scholar
Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar
[29] 钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 66 124101Google Scholar
Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar
[30] Nguyen H D, Wulfkühler J P, Heisig J, Tajmar M 2021 Sci. Rep. 11 8345Google Scholar
[31] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 074101Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar
[32] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 084104Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar
[33] Oshima N, Iwai Y, Kojima T M, Ikeda T, Kanazawa Y, Hoshino M, Suzuki R, Yamazaki Y 2009 Mater. Sci. Forum 607 263Google Scholar
[34] DuBois R D, Tőkési K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 186Google Scholar
[35] Kojima T M, Tomono D, Ikeda T, Ishida K, Iwai Y, Iwasaki M, Matsuda Y, Matsuzaki T, Yamazaki Y 2007 J. Phys. Soc. Jpn. 76 093501Google Scholar
[36] Tomono D, Kojima T M, Ishida K, Ikeda T, Iwai Y, Tokuda M, Kanazawa Y, Matsuda Y, Matsuzaki T, Iwasaki M, Yamazaki Y 2011 J. Phys. Soc. Jpn. 80 044501Google Scholar
[37] Ikeda T, Kanai Y, Iwai Y, Kojima T M, Maeshima K, Meissl W, Kobayashi T, Nebiki T, Miyamoto S, Pokhil G P, Narusawa T, Imamoto N, Yamazaki Y 2011 Surf. Coat. Tech. 206 859Google Scholar
[38] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar
[39] Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 2277Google Scholar
[40] Bereczky R J, Kowarik G, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 317Google Scholar
[41] Gruber E, Stolterfoht N, Allinger P, Wampl S, Wang Y, Simon M J, Aumayr F 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 340 1Google Scholar
[42] Ikeda T, Kojima T M, Natsume Y, Kimura J, Abe T 2016 Appl. Phys. Lett. 109 133501Google Scholar
[43] Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 1324Google Scholar
[44] Hespeels F, Tonneau R, Ikeda T, Lucas S 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 362 72Google Scholar
[45] Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 273 237Google Scholar
[46] Ikeda T, Ikekame M, Hikima Y, Mori M, Kawamura S, Minowa T, Jin W G 2020 Nucl. Instrum. Methods Phys. Res. Sect. B 470 42Google Scholar
[47] Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar
[48] Mäckel V, Meissl W, Ikeda T, Clever M, Meissl E, Kobayashi T, Kojima T M, Imamoto N, Ogiwara K, Yamazaki Y 2014 Rev. Sci. Instrum. 85 014302Google Scholar
[49] Mäckel V, Puttaraksa N, Kobayashi T, Yamazaki Y 2015 Rev. Sci. Instrum. 86 085103Google Scholar
[50] Puttaraksa N, Mäckel V, Kobayashi T, Kojima T M, Hamagaki M, Imamoto N, Yamazaki Y 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 348 127Google Scholar
[51] Ikeda T, Izumi M, Mäckel V, Kobayashi T, Bereczky R J, Hirano T, Yamazaki Y, Abe T 2015 RIKEN Accel. Prog. Rep. 48 315
[52] Ikeda T, Izumi M, Mäckel V, Kobayashi T, Ogiwara K, Hirano T, Yamazaki Y, Abe T 2014 RIKEN Accel. Prog. Rep. 47 282
[53] Kato M, Meissl W, Umezawa K, Ikeda T, Yamazaki Y 2012 Appl. Phys. Lett. 100 193702Google Scholar
[54] Ikeda T 2020 Quantum Beam Sci. 4 22Google Scholar
[55] 谢一鸣 2020 硕士学位论文(兰州: 兰州大学)
Xie Y M 2020 M. S. Thesis (Lanzhou: Lanzhou University
[56] He T, Wan C, Liu Z, Zhang H, Lu L 2023 JINST 18 P05034Google Scholar
[57] Rana M A 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 910 121Google Scholar
[58] Computer code SRIM, version-2013[EB/OL] Ziegler J F http://www.srim.org/ [2024-1-1]
-
图 5 玻璃毛细管在不同倾角下外束微束的全部穿透率(圆形标记)和直接穿透穿透率(正方形标记). 插图为0°倾角下实验测得的外束微束能谱(黑色), 解谱得到直接穿透部分(红色)和散射部分(蓝色). 左右两侧虚线间距代表玻璃毛细管的张角(0.9°)
Fig. 5. Transmission rate of the total penetration (circle) and direct penetration (square) of the external microbeam, according to various tilt angles of the glass capillary. Insert: experimentally measured energy spectrum of the external microbeam at tilt angle 0°(black), the direct penetration part (red) and scattering part (blue) are obtained by deconstructing the spectrum. The distance between the dashed lines on both sides represents the geometric flare angle of the glass capillary (0.9°).
图 6 2.5 MeV质子在玻璃毛细管内的模拟结果 (a) β = 0.4°时的散射角分布, 此时散射离子最大概率出射角为0.7°; (b) 不同β角下的最大概率出射角; (c)不同β角下的散射概率; (d) 玻璃毛细管内侧距出口不同距离处的出射最小概率
Fig. 6. Simulation of 2.5 MeV protons in the glass capillary: (a) Scattering angle distribution at an incidence angle of 0.4°, the most probability exit angle is 0.7°; (b) the most probable exit angle at different β angles; (c) scattering probability of protons at different β angles; (d) the least exit probability at different distances in the glass capillary towards the outlet.
图 7 (a)倾角为0°时外束微束在玻璃管末端的出射情况示意图; (b)实验测得能谱, 黑色线为总能谱, 灰色填充部分为直接穿透能谱; (c)倾角为1.2°时直接穿透离子消失; (d)相应的能谱中直接穿透部分消失
Fig. 7. (a) Schematic drawing of the external microbeam emission at the end of a glass capillary; (b) the experimentally measured energy spectrum at title angle of 0°, the red and blue lines in panel (a) represent the diret penetration and scattering part, respectively; the black line and the gray filled part represent the total energy spectrum and the direct penetration spectrum, respectively; (c) when the tilt angle is 1.2°, the directly penetrating ions disappear; (d) the directly penetrating part of the energy spectrum disappears, correspondingly.
图 8 (a) 0°倾角下, 距毛细玻璃管出口不同距离处的外束微束束斑轮廓. 1 mm处束斑轮廓图中红色和蓝色虚线区域分别为直接穿透离子和散射离子在探测器上形成的束斑轮廓. (b) 0°倾角下直接穿透离子(红色)和散射离子(蓝色)分别在距玻璃毛细管出口1 mm和4 mm处探测器上形成束斑尺寸的理论示意图, 分别以1.8°张角和20°张角计算直接穿透离子和散射离子的理论最大分布直径. 距玻璃管出口1 mm和4 mm处, 直接穿透离子为140 μm和230 μm, 散射离子为460 μm和1.5 mm
Fig. 8. (a) Spot profiles of the external microbeam at different distances from the outlet of the glass capillary at tilt angle of 0°. Red and blue dashed lines represent the beam spot profiles formed by directly penetrating ions and scattering ions on the detector, respectively. (b) Theoretical schematic panel (a) of the beam spot size formed by direct penetration of ions (red) and scattered ions (blue) at an tilt angle of 0° on the detector at a distance of 1 mm and 4 mm from the exit of the glass capillary, respectively. The theoretical maximum distribution diameters of direct penetrating ions and scattered ions were calculated at angles of 1.8° and 20°, respectively. At distances of 1 mm and 4 mm from the exit of the glass capilarry, the spot diameters of direct penetrating ions are 140 μm and 230 μm, while the spot diameters of the scattered ions are 460 μm and 1.5 mm.
图 9 离子在玻璃毛细管内壁上以最大出射角发生一次散射(蓝色)和二次散射(绿色)示意图, 红线代表直接穿透离子. 初级和次级散射离子的焦点分别位于距离玻璃毛细管出口约3 mm和1 mm处
Fig. 9. Schematic drawing of primary (blue) and secondary (green) scattering of ions at the most probability exit angle on the inner wall of the glass capillary, the red line representing direct penetration of ions. The focal points of primary and secondary scattering ions are located approximately 3 mm and 1 mm away from the glass capillary outlet, respectively.
-
[1] Grime G W, Abraham M H, Marsh M A 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 181 66Google Scholar
[2] 窦彦昕 2018 博士学位论文(哈尔滨: 哈尔滨工业大学)
Dou Y X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology
[3] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar
[4] Nebiki T, Yamamoto T, Narusawa T 2003 J. Vac. Sci. Technol. A 21 1671Google Scholar
[5] Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar
[6] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar
[7] Cassimi A, Muranaka T, Maunoury L, Lebius H, Manil B, Huber B A, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Nebiki T, Narusawa T 2008 Int. J. Nanotechnol. 5 809Google Scholar
[8] Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902Google Scholar
[9] Chen J, Xue Y L, Liu J L, Wu Y H, Ruan F F, Wang W, Yu D Y, Cai X H 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 281 26Google Scholar
[10] Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915Google Scholar
[11] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res. Sect. B 258 145Google Scholar
[12] Wang Y Y, Li D H, Zhao Y T, Xiao G Q, Xu Z F, Li F L, Chen X M 2009 J. Phys. Conf. Ser. 194 132032Google Scholar
[13] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar
[14] Wang X, Zhao Y T, Wang Y Y, Cheng R, Li D H, Zhang S F, Xiao G Q 2011 Phys. Scr. 2011 014046Google Scholar
[15] Juhász Z, Kovács S T S, Herczku P, Rácz R, Biri S, Rajta I, Gál G A B, Szilasi S Z, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 279 177Google Scholar
[16] Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar
[17] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lü X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902Google Scholar
[18] Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lü X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901Google Scholar
[19] Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901Google Scholar
[20] Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar
[21] Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar
[22] Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar
[23] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703Google Scholar
[24] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar
[25] Stolterfoht N, Tanis J 2018 Nucl. Instrum. Metods Phys. Res. Sect. B 421 32Google Scholar
[26] Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701Google Scholar
[27] Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707Google Scholar
[28] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103Google Scholar
Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar
[29] 钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 66 124101Google Scholar
Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar
[30] Nguyen H D, Wulfkühler J P, Heisig J, Tajmar M 2021 Sci. Rep. 11 8345Google Scholar
[31] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 074101Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar
[32] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 084104Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar
[33] Oshima N, Iwai Y, Kojima T M, Ikeda T, Kanazawa Y, Hoshino M, Suzuki R, Yamazaki Y 2009 Mater. Sci. Forum 607 263Google Scholar
[34] DuBois R D, Tőkési K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 186Google Scholar
[35] Kojima T M, Tomono D, Ikeda T, Ishida K, Iwai Y, Iwasaki M, Matsuda Y, Matsuzaki T, Yamazaki Y 2007 J. Phys. Soc. Jpn. 76 093501Google Scholar
[36] Tomono D, Kojima T M, Ishida K, Ikeda T, Iwai Y, Tokuda M, Kanazawa Y, Matsuda Y, Matsuzaki T, Iwasaki M, Yamazaki Y 2011 J. Phys. Soc. Jpn. 80 044501Google Scholar
[37] Ikeda T, Kanai Y, Iwai Y, Kojima T M, Maeshima K, Meissl W, Kobayashi T, Nebiki T, Miyamoto S, Pokhil G P, Narusawa T, Imamoto N, Yamazaki Y 2011 Surf. Coat. Tech. 206 859Google Scholar
[38] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar
[39] Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 2277Google Scholar
[40] Bereczky R J, Kowarik G, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 317Google Scholar
[41] Gruber E, Stolterfoht N, Allinger P, Wampl S, Wang Y, Simon M J, Aumayr F 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 340 1Google Scholar
[42] Ikeda T, Kojima T M, Natsume Y, Kimura J, Abe T 2016 Appl. Phys. Lett. 109 133501Google Scholar
[43] Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 1324Google Scholar
[44] Hespeels F, Tonneau R, Ikeda T, Lucas S 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 362 72Google Scholar
[45] Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 273 237Google Scholar
[46] Ikeda T, Ikekame M, Hikima Y, Mori M, Kawamura S, Minowa T, Jin W G 2020 Nucl. Instrum. Methods Phys. Res. Sect. B 470 42Google Scholar
[47] Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar
[48] Mäckel V, Meissl W, Ikeda T, Clever M, Meissl E, Kobayashi T, Kojima T M, Imamoto N, Ogiwara K, Yamazaki Y 2014 Rev. Sci. Instrum. 85 014302Google Scholar
[49] Mäckel V, Puttaraksa N, Kobayashi T, Yamazaki Y 2015 Rev. Sci. Instrum. 86 085103Google Scholar
[50] Puttaraksa N, Mäckel V, Kobayashi T, Kojima T M, Hamagaki M, Imamoto N, Yamazaki Y 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 348 127Google Scholar
[51] Ikeda T, Izumi M, Mäckel V, Kobayashi T, Bereczky R J, Hirano T, Yamazaki Y, Abe T 2015 RIKEN Accel. Prog. Rep. 48 315
[52] Ikeda T, Izumi M, Mäckel V, Kobayashi T, Ogiwara K, Hirano T, Yamazaki Y, Abe T 2014 RIKEN Accel. Prog. Rep. 47 282
[53] Kato M, Meissl W, Umezawa K, Ikeda T, Yamazaki Y 2012 Appl. Phys. Lett. 100 193702Google Scholar
[54] Ikeda T 2020 Quantum Beam Sci. 4 22Google Scholar
[55] 谢一鸣 2020 硕士学位论文(兰州: 兰州大学)
Xie Y M 2020 M. S. Thesis (Lanzhou: Lanzhou University
[56] He T, Wan C, Liu Z, Zhang H, Lu L 2023 JINST 18 P05034Google Scholar
[57] Rana M A 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 910 121Google Scholar
[58] Computer code SRIM, version-2013[EB/OL] Ziegler J F http://www.srim.org/ [2024-1-1]
计量
- 文章访问数: 1653
- PDF下载量: 136
- 被引次数: 0