搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程

白雄飞 牛书通 周旺 王光义 潘鹏 方兴 陈熙萌 邵剑雄

引用本文:
Citation:

20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程

白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄

Dynamic evolution of 20-keV H+ transmitted through polycarbonate nanocapillaries

Bai Xiong-Fei, Niu Shu-Tong, Zhou Wang, Wang Guang-Yi, Pan Peng, Fang Xing, Chen Xi-Meng, Shao Jian-Xiong
PDF
导出引用
  • 测量了20 keV质子穿过倾斜角为+1的聚碳酸酯微孔膜后,出射粒子的位置分布、相对穿透率以及电荷纯度随时间的演化.实验发现,能量电荷比E/q101 kV的质子穿过绝缘纳米微孔的物理机理与E/q100 kV和E/q102 kV区域离子有显著不同.对于E/q101 kV的质子穿过绝缘纳米微孔,存在一段相当长的导向建立之前(导向前)的过程,在该时期内出射质子及氢原子的特性和导向建立后的特性有很大差异.在导向前的演化过程中,我们可以观察到出射质子的峰位逐渐向孔轴向附近转移;出射氢原子由束流方向的尖峰以及孔轴向的主峰构成,峰位角保持基本不变且尖峰逐渐消失.这一过程的主要机理为微孔内表面以下的多次随机二体碰撞和近表面镜面反射两种传输方式逐步向电荷斑约束下的导向效应过渡的过程.对E/q101 kV区间离子导向前过程的完整观测,使得对低能向中能过渡区间离子穿过绝缘微孔膜物理机制和图像有更深入和完整的认识,有助于约10 keV离子微束的精确控制和应用.
    In recent years, by using the etching techniques with great precision, the ion tracks in materials were converted into insulator and metal nanocapillaries. The physical and chemical properties of the inner surface on micro and nano-scales of these capillaries can be investigated by the interaction of ions with the surfaces. Stolterfoht et al. (2002 Phys. Rev. Lett. 88 133201) have found the evidence for capillary guiding in studying the transmission of 3 keV Ne7+ ions (energy/charge E/q100 kV) through the polymer nanocapillaries. The self-organized charge-up process was thought to inhibit close contact between the ions and the inner capillary walls. Skog et al. (2008 Phys. Rev. Lett. 101 223202) investigated the guiding effect of 7 keV Ne7+ ions (E/q100 kV) transmitted through SiO2 nanocapillaries, and found the evidence of sequentially formed charge patches along the capillary. For these keV highly charged ions with E/q100 kV, the charge patches were formed in a very short time, and then the repulsive electric field rapidly becomes strong enough to deflect the ions, then the ions move along the capillary axis without charge exchange. Zhou et al. (2016 Acta Phys. Sin. 65 103401) have investigated the transmission of 100 keV protons (E/q102 kV) through the nanocapillaries in polycarbonate (PC) membrane. It was found that the transmitted ions are located around the direction of the incident beam, rather than along the capillary axis. This indicated that the transmission mechanism of hundreds of keV protons through nanocapillaries is significantly different from that for keV highly charged ions. For 100 keV protons, several charge patches suppress the protons to penetrate into the surface, and the protons are transmitted via twice specular scattering near the surface and finally emitted along the incident direction. However, the study of the transmission of E/q101 kV ions through nanocapillaries is still lacking. In this work, we measure the time evolution of the relative transmission rate, charge state and angular distribution as well as the full width at half maximum of 20 keV protons (E/q101 kV) transmitted through the nanocapillaries in PC membrane at a tilt angle of +1. We observe a very long time pre-guiding period before the stable guiding process is established. During the pre-guiding period the direction of the transmitted H+ ions changes to the direction of capillary axis gradually. The transmitted H0 particles are composed of two peaks:the higher and sharper one is nearly in the beam direction, the wider and lower one is around the guiding direction. With the continuous charging-up process, the intensities of the narrow and sharp peak of transmitted H0 near the beam direction will decrease and disappear at the end. The data indicate that the scattering and guiding forces are both important for E/q101 kV ions during the period of pre-guiding process, and the guiding force is dominant till a long time pre-guiding period is ended. This finding will fill in the gap between E/q100 kV and 102 kV of previous studies of ions transmitted through nanocapillaries. It is also helpful for finding the applications of nano-and micro-sized ion beams produced by tapered glass capillary with E/q101 kV.
      通信作者: 陈熙萌, chenxm@lzu.edu.cn;shaojx@lzu.edu.cn ; 邵剑雄, chenxm@lzu.edu.cn;shaojx@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11675067)和国家自然科学基金青年科学基金(批准号:11605078)资助的课题.
      Corresponding author: Chen Xi-Meng, chenxm@lzu.edu.cn;shaojx@lzu.edu.cn ; Shao Jian-Xiong, chenxm@lzu.edu.cn;shaojx@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675067) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11605078).
    [1]

    Spohr R 1990 Ion Tracks and Microtechnology (Braunschweig: Viehweg) pp93-182

    [2]

    Fleischer R L, Price P B, Walker R M 1969 Sci. Amer. 220 30

    [3]

    Yamazaki Y, Ninomiya S, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1996 J. Phys. Soc. Jpn. 65 1199

    [4]

    Ninomiya S, Yamazaki Y, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1997 Phys. Rev. Lett. 78 4557

    [5]

    Tksi K, Wirtz L, Lemell C, Burgdrfer J 2000 Phys. Rev. A 61 020901

    [6]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [7]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [8]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902

    [9]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [12]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelivre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674

    [13]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901

    [14]

    Juhsz Z, Sulik B, Rcz R, Biri S, Bereczky R J, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev. A 82 062903

    [15]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [16]

    Lemell C, Burgdrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [17]

    Simona M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Meth. B 330 11

    [18]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [19]

    Mo D 2009 Ph. D. Dissertation (Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese) [莫丹 2009 博士学位论文 (兰州: 中国科学院近代物理研究所)]

  • [1]

    Spohr R 1990 Ion Tracks and Microtechnology (Braunschweig: Viehweg) pp93-182

    [2]

    Fleischer R L, Price P B, Walker R M 1969 Sci. Amer. 220 30

    [3]

    Yamazaki Y, Ninomiya S, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1996 J. Phys. Soc. Jpn. 65 1199

    [4]

    Ninomiya S, Yamazaki Y, Koike F, Masuda H, Azuma T, Komaki K, Kuroki K, Sekiguchi M 1997 Phys. Rev. Lett. 78 4557

    [5]

    Tksi K, Wirtz L, Lemell C, Burgdrfer J 2000 Phys. Rev. A 61 020901

    [6]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [7]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [8]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902

    [9]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [12]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelivre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674

    [13]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901

    [14]

    Juhsz Z, Sulik B, Rcz R, Biri S, Bereczky R J, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev. A 82 062903

    [15]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [16]

    Lemell C, Burgdrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [17]

    Simona M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Meth. B 330 11

    [18]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [19]

    Mo D 2009 Ph. D. Dissertation (Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese) [莫丹 2009 博士学位论文 (兰州: 中国科学院近代物理研究所)]

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应.  , 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [2] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体.  , 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [3] 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌. 低能Cl在Al2O3绝缘微孔膜中的输运过程.  , 2020, 69(9): 094101. doi: 10.7498/aps.69.20190933
    [4] 魏万里, 翁春生, 武郁文, 郑权. 涡轮导向器对旋转爆轰波传播特性影响的实验研究.  , 2020, 69(6): 064703. doi: 10.7498/aps.69.20191547
    [5] 牛书通, 潘鹏, 朱炳辉, 宋涵宇, 金屹磊, 禹楼飞, 韩承志, 邵剑雄, 陈熙萌. 30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究.  , 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [6] 牛书通, 周旺, 潘鹏, 朱炳辉, 宋涵宇, 邵剑雄, 陈熙萌. 30 keV He2+在不同倾斜角度的聚碳酸酯微孔膜中的传输过程.  , 2018, 67(17): 176102. doi: 10.7498/aps.67.20172484
    [7] 周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌. 100-keV质子在聚碳酸酯微孔膜中传输的动态演化过程.  , 2016, 65(10): 103401. doi: 10.7498/aps.65.103401
    [8] 姚俊兰, 安振连, 毛明军, 张冶文, 夏钟福. 等温结晶化条件对氟化孔洞聚丙烯膜电荷稳定性的显著影响.  , 2010, 59(9): 6508-6513. doi: 10.7498/aps.59.6508
    [9] 陈益峰, 陈熙萌, 娄凤君, 徐进章, 绍剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫. Al2O3微孔膜对60 keV O+离子的“导向”效应.  , 2010, 59(1): 222-226. doi: 10.7498/aps.59.222
    [10] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性.  , 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [11] 安振连, 赵 敏, 汤敏敏, 杨 强, 夏钟福. 氟气处理孔洞聚丙烯膜显著改善的电荷存储特性.  , 2008, 57(9): 5859-5862. doi: 10.7498/aps.57.5859
    [12] 王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈 军. 宏观电偶极子对聚丙烯铁电驻极体膜电荷储存及其动态特性的影响.  , 2007, 56(10): 6061-6067. doi: 10.7498/aps.56.6061
    [13] 胡海龙, 张 琨, 王振兴, 孔 涛, 胡 颖, 王晓平. 硫醇自组装分子膜末端基团对其电荷输运特性的影响.  , 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [14] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性.  , 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [15] 安振连, 汤敏敏, 夏钟福, 盛晓晨, 张晓青. 聚丙烯孔洞驻极体膜的化学表面处理及电荷稳定性.  , 2006, 55(2): 803-810. doi: 10.7498/aps.55.803
    [16] 郭冠军, 邵 芸. 激光散斑效应对激光雷达探测性能的影响.  , 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
    [17] 冯 倩, 黄志高, 都有为. 磁性多层膜磁特性的表面效应.  , 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
    [18] 陈斌, 李有泉, 沙健, 张其瑞. 介观电路中电荷的量子效应.  , 1997, 46(1): 129-133. doi: 10.7498/aps.46.129
    [19] 孔祥贵, 刘益春, 鄂书林. CuPc LB膜与InP接触界面电荷态对Raman光谱的影响.  , 1994, 43(5): 809-815. doi: 10.7498/aps.43.809
    [20] 蔡学榆, 尹道乐. 多层膜超导体的邻近效应.  , 1981, 30(5): 700-704. doi: 10.7498/aps.30.700
计量
  • 文章访问数:  5960
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-12
  • 修回日期:  2017-01-29
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map