Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Motion of a circular particle in the power-law lid-driven cavity flow

Yang Xiao-Feng Liu Jiao Shan Fang Chai Zhen-Hua Shi Bao-Chang

Citation:

Motion of a circular particle in the power-law lid-driven cavity flow

Yang Xiao-Feng, Liu Jiao, Shan Fang, Chai Zhen-Hua, Shi Bao-Chang
PDF
HTML
Get Citation
  • In this paper, the motion of a circular particle in a lid-driven square cavity with the power-law fluid is studied by using the diffuse interface lattice Boltzmann method, and the study mainly considers the effects of the particle's initial position, the power-law index, the Reynolds number, and the particle size. The numerical results show that the circular particle is first in a centrifugal motion under the effect of inertia, and it finally moves steadily on the limit cycle. Furthermore, it is also found that the initial position of the particle has no influence on the limit cycle. For a shear-thinning fluid flow, the limit cycle moves towards the bottom right corner of the square cavity. Moreover, the particle velocity is small, and the period of the particle motion is long. On the other hand, in the case of shear-thickening fluid flow, the limit cycle moves towards the top left corner of the cavity. In addition, the particle velocity is large, and the period of the particle motion is short.With the increase of Reynolds number, the limit cycle moves towards the bottom right corner of the square cavity, which is caused by a strong fluid flow field. Meanwhile, the particle velocity becomes larger, and the period of the particle motion is shorter. With the increase of particle size, the effect of confinement of the cavity boundary becomes significant, and the circular particle is pushed towards the center of the cavity. In this case, the limit cycle shrinks towards the center of the cavity. The circular particle squeezes the secondary vortices, especially when the circular particle is located in the bottom left, bottom right and top left corners. Additionally, the appearance of the circular particle has a significant influence on the position of the primary vortex, which changes periodically near the position of the primary vortex without the particle. It is also observed that the influence of the circular particle becomes more significant as its size increases and the power-law index decreases.
      Corresponding author: Chai Zhen-Hua, hustczh@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12072127, 123B2018), the Interdisciplinary Research Program of Huazhong University of Science and Technology, China (Grant Nos. 2023JCJY002, 2024JCYJ001), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. YCJJ20241101, 2023JY-CXJJ046).
    [1]

    Chhabra R P 2006 Bubbles, Drops, and Particles in Non-Newtonian Fluids (Boca Raton: CRC Press) pp40-74

    [2]

    朱克勤 2006 力学与实践 28 1Google Scholar

    Zhu K Q 2006 Mech. Eng. 28 1Google Scholar

    [3]

    Saramito P, Roquet N 2001 Comput. Methods Appl. Mech. Eng. 190 5391Google Scholar

    [4]

    Neofytou P 2005 Adv. Eng. Software 36 664Google Scholar

    [5]

    Rafiee A 2008 Anziam J. 49 411Google Scholar

    [6]

    Bell B C, Surana K S 1994 Int. J. Numer. Methods Fluids 18 127Google Scholar

    [7]

    Papanastasiou T C, Boudouvis A G 1997 Comput. Geotech. 64 677

    [8]

    Papanastasiou T C 1987 J. Rheol. 31 385Google Scholar

    [9]

    Roquet N, Saramito P 2008 J. Non-Newtonian Fluid Mech. 155 101Google Scholar

    [10]

    Tazangi H R, Goharrizi A S, Javaran E J 2021 Korea-Aust. Rheol. J. 33 293Google Scholar

    [11]

    Schreiber R, Keller H B 1983 J. Comput. Phys. 49 310Google Scholar

    [12]

    Botella O, Peyret R 1998 Comput. Fluids 27 421Google Scholar

    [13]

    Erturk E, Corke T C 2005 Int. J. Numer. Methods Fluids 48 747Google Scholar

    [14]

    Mendu S S, Das P K 2012 J. Non-Newtonian Fluid Mech. 175–176 10

    [15]

    Li Q X, Hong N, Shi B C, Chai Z H 2014 Commun. Comput. Phys. 15 265Google Scholar

    [16]

    Aguirre A, Castillo E, Cruchaga M, Codina R, Baiges J 2018 J. Non-Newton. Fluid Mech. 257 22Google Scholar

    [17]

    Alleborn N, Raszillier H, Durst F 1999 Int. J. Heat Mass Trans. 42 833Google Scholar

    [18]

    Stephen T, Nathan E 2007 Geology 35 1027

    [19]

    Zhong H C, Zhou J, Du Z X, Xie L 2018 J. Aerosol Sci. 121 31Google Scholar

    [20]

    Madankan R, Pouget S, Singla P, Bursik M, Dehn J, Jones M, Patra A, Pavolonis M, Pitman E B, Singh T, Webley P 2014 J. Comput. Phys. 271 39Google Scholar

    [21]

    Yue G X, Cai R X, Lu J F, Zhang H 2017 Powder Technol. 316 18Google Scholar

    [22]

    He W C, Lv X W, Pan F F, Li X Q, Yan Z M 2019 Powder Technol. 356 1087Google Scholar

    [23]

    Sidik N A C, Attarzadeh S M R 2011 Int. J. Mech. 5 123

    [24]

    Romanò F, Kuhlmann H C 2017 Theor. Comput. Fluid Dyn. 31 427Google Scholar

    [25]

    Hu J J, Sun D K, Mao S H, Wu H M, Yu S Y, Xu M S 2022 J. Comput. Theor. Transp. 51 222Google Scholar

    [26]

    Hu J J 2021 Int. J. Mod. Phys. C 32 1

    [27]

    Hu J J 2020 Phys. Fluids 32 222

    [28]

    Safdari A, Kim K C 2014 Comput. Math. Appl. 68 606Google Scholar

    [29]

    Francescò R, Hendrik H C 2017 Theor. Comput. Fluid Dyn. 31 1

    [30]

    Chen S, Doolen G D 1998 Rev. Fluid Mech. 30 329Google Scholar

    [31]

    Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press) pp3-38

    [32]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Singapore: World Scientific Publishing Co.) pp10-21

    [33]

    Krüger T, Kusumaatmaja H, Silva G, Shardt O, Kuzmin A, Viggen E M 2017 The Lattice Boltzmann Method: Principles and Practice (Switzerland: Springer International Publishing) pp61-65

    [34]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 277 271Google Scholar

    [35]

    Inamuro T, Maeba K, Ogino F 2000 Int. J. Multiphase. Flow 26 1981Google Scholar

    [36]

    Shao X, Yu Z, Sun B 2008 Phys. Fluids 20 103307Google Scholar

    [37]

    Noble D R, Torczynski J R 1998 Int. J. Modern Phys. C 9 1189Google Scholar

    [38]

    Liu J, Huang C S, Chai Z H, Shi B C 2022 Comput. Fluids 233 105240Google Scholar

    [39]

    Liu J, Chai Z H, Shi B C 2022 Phys. Rev. E 106 015306Google Scholar

    [40]

    Boyd J, Buick J, Green S 2006 J. Phys. A 39 14241Google Scholar

    [41]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newton. Fluid Mech. 157 133Google Scholar

    [42]

    Chai Z H, Shi B C, Guo Z L, Rong F M 2011 J. Non-Newton. Fluid Mech. 166 332Google Scholar

    [43]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

  • 图 1  不同幂律指数下的中心线速度分布($ Re = 100 $) (a)垂直速度; (b) 水平速度

    Figure 1.  The velocity profiles along the centerlines at different power-law indices ($ Re = 100 $): (a) The vertical velocity profile; (b) the horizontal velocity profile.

    图 2  圆形颗粒在顶盖驱动流中运动的示意图

    Figure 2.  The schematic of a circular particle moving in a lid-driven square cavity.

    图 3  不同雷诺数下圆形颗粒的极限环

    Figure 3.  The limit cycles of a circular particle at different Reynolds numbers.

    图 4  $ Re = 1000 $时中心线速度分布对比 (a)垂直速度; (b)水平速度

    Figure 4.  The comparisons of the velocity profiles along the centerlines at $ Re = 1000 $: (a) The vertical velocity profile; (b) the horizontal velocity profile.

    图 5  圆形颗粒在不同网格尺寸顶盖驱动流中的运动轨迹($ N_{x}\times N_{y} = 256\times 256 $, $ 512\times 512 $, $ 1024\times 1024 $)

    Figure 5.  The trajectories of a circular particle moving in a lid-driven cavity with three different grid sizes ($ N_{x}\times $$ N_{y} = 256\times 256 $, $ 512\times 512 $, $ 1024\times 1024 $).

    图 6  圆形颗粒在幂律流体顶盖驱动流中的运动轨迹 (a) $ n = 0.5 $; (b) $ n = 1.0 $; (c) $ n = 1.5 $

    Figure 6.  The trajectories of the circular particle moving in the lid-driven cavity flows under different power-law indices and different initial positions: (a) $ n = 0.5 $; (b) $ n = 1.0 $; (c) $n = 1.5 $.

    图 7  圆形颗粒在幂律流体顶盖驱动流中运动的极限环 (a) $ Re = 500 $; (b) $ Re = 1000 $; (c) $ Re = 2000 $

    Figure 7.  The limit cycles of the circular particle moving in the power-law lid-driven cavity flows with different power-law indices and Reynolds numbers: (a) $ Re = 500 $; (b) $ Re = 1000 $; (c) $ Re = 2000 $.

    图 8  幂律流体顶盖驱动流的流线及圆形颗粒的位置 (a) $ n = 0.5 $; (b) $ n = 1.0 $; (c) $ n = 1.5 $

    Figure 8.  The streamlines of power-law fluid flows and the positions of the circular particle under different power-law indices: (a) $ n = 0.5 $; (b) $ n = 1.0 $; (c) $ n = 1.5 $.

    图 9  不同幂律指数($ n = 0.5 $, $ 1.0 $和$ 1.5 $)下圆形颗粒的速度 (a) $ Re = 500 $; (b) $Re = 1000 $; (c) $Re = 2000 $

    Figure 9.  The evolutions of particle velocity under different power-law indices: (a) $ Re = 500 $; (b) $ Re = 1000 $; (c) $Re = 2000 $.

    图 10  不同颗粒尺寸和幂律指数下颗粒运动的极限环 (a) $ n = 0.5 $; (b) $ n = 1.0 $; (c) $ n = 1.5 $

    Figure 10.  The limit cycles of the moving particle in the power-law lid-driven cavity flows with different particle sizes and power-law indices: (a) $ n = 0.5 $; (b) $ n = 1.0 $; (c) $ n = 1.5 $.

    图 11  不同颗粒尺寸和幂律指数下颗粒的运动速度 (a) $ n = 0.5 $; (b) $ n = 1.0 $; (c) $ n = 1.5 $

    Figure 11.  The evolutions of particle velocity under different particle sizes and power-law indices: (a) $ n = 0.5 $; (b) $ n = 1.0 $; (c) $ n = 1.5 $.

    图 12  不同幂律指数下幂律流体顶盖驱动流(Re = 1000, r = 0.2)的圆形颗粒位置和流线 (a) n = 0.5; (b) n = 1.0; (c) n = 1.5

    Figure 12.  The positions of circular particle and the streamlines of the power-law lid-driven cavity flows (Re = 1000, r = 0.2) with different power-law indices: (a) n = 0.5; (b) n = 1.0; (c) n = 1.5.

    图 13  主涡涡心位置的水平、竖直坐标坐标随时间变化图 (a) $ x $轴坐标, $ r = 0.1 $; (b) $ y $轴坐标, $ r = 0.1 $; (c) $ x $轴坐标, $ r = 0.2 $; (d) $ y $轴坐标, $ r = 0.2 $

    Figure 13.  The evolutions of the x-axis and y-axis coordinates of position of primary vortex: (a) x-axis, $ r = 0.1 $; (b) y-axis, $ r = 0.1 $; (c) x-axis, $ r = 0.2 $; (d) y-axis, $ r = 0.2 $.

    Baidu
  • [1]

    Chhabra R P 2006 Bubbles, Drops, and Particles in Non-Newtonian Fluids (Boca Raton: CRC Press) pp40-74

    [2]

    朱克勤 2006 力学与实践 28 1Google Scholar

    Zhu K Q 2006 Mech. Eng. 28 1Google Scholar

    [3]

    Saramito P, Roquet N 2001 Comput. Methods Appl. Mech. Eng. 190 5391Google Scholar

    [4]

    Neofytou P 2005 Adv. Eng. Software 36 664Google Scholar

    [5]

    Rafiee A 2008 Anziam J. 49 411Google Scholar

    [6]

    Bell B C, Surana K S 1994 Int. J. Numer. Methods Fluids 18 127Google Scholar

    [7]

    Papanastasiou T C, Boudouvis A G 1997 Comput. Geotech. 64 677

    [8]

    Papanastasiou T C 1987 J. Rheol. 31 385Google Scholar

    [9]

    Roquet N, Saramito P 2008 J. Non-Newtonian Fluid Mech. 155 101Google Scholar

    [10]

    Tazangi H R, Goharrizi A S, Javaran E J 2021 Korea-Aust. Rheol. J. 33 293Google Scholar

    [11]

    Schreiber R, Keller H B 1983 J. Comput. Phys. 49 310Google Scholar

    [12]

    Botella O, Peyret R 1998 Comput. Fluids 27 421Google Scholar

    [13]

    Erturk E, Corke T C 2005 Int. J. Numer. Methods Fluids 48 747Google Scholar

    [14]

    Mendu S S, Das P K 2012 J. Non-Newtonian Fluid Mech. 175–176 10

    [15]

    Li Q X, Hong N, Shi B C, Chai Z H 2014 Commun. Comput. Phys. 15 265Google Scholar

    [16]

    Aguirre A, Castillo E, Cruchaga M, Codina R, Baiges J 2018 J. Non-Newton. Fluid Mech. 257 22Google Scholar

    [17]

    Alleborn N, Raszillier H, Durst F 1999 Int. J. Heat Mass Trans. 42 833Google Scholar

    [18]

    Stephen T, Nathan E 2007 Geology 35 1027

    [19]

    Zhong H C, Zhou J, Du Z X, Xie L 2018 J. Aerosol Sci. 121 31Google Scholar

    [20]

    Madankan R, Pouget S, Singla P, Bursik M, Dehn J, Jones M, Patra A, Pavolonis M, Pitman E B, Singh T, Webley P 2014 J. Comput. Phys. 271 39Google Scholar

    [21]

    Yue G X, Cai R X, Lu J F, Zhang H 2017 Powder Technol. 316 18Google Scholar

    [22]

    He W C, Lv X W, Pan F F, Li X Q, Yan Z M 2019 Powder Technol. 356 1087Google Scholar

    [23]

    Sidik N A C, Attarzadeh S M R 2011 Int. J. Mech. 5 123

    [24]

    Romanò F, Kuhlmann H C 2017 Theor. Comput. Fluid Dyn. 31 427Google Scholar

    [25]

    Hu J J, Sun D K, Mao S H, Wu H M, Yu S Y, Xu M S 2022 J. Comput. Theor. Transp. 51 222Google Scholar

    [26]

    Hu J J 2021 Int. J. Mod. Phys. C 32 1

    [27]

    Hu J J 2020 Phys. Fluids 32 222

    [28]

    Safdari A, Kim K C 2014 Comput. Math. Appl. 68 606Google Scholar

    [29]

    Francescò R, Hendrik H C 2017 Theor. Comput. Fluid Dyn. 31 1

    [30]

    Chen S, Doolen G D 1998 Rev. Fluid Mech. 30 329Google Scholar

    [31]

    Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press) pp3-38

    [32]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Singapore: World Scientific Publishing Co.) pp10-21

    [33]

    Krüger T, Kusumaatmaja H, Silva G, Shardt O, Kuzmin A, Viggen E M 2017 The Lattice Boltzmann Method: Principles and Practice (Switzerland: Springer International Publishing) pp61-65

    [34]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 277 271Google Scholar

    [35]

    Inamuro T, Maeba K, Ogino F 2000 Int. J. Multiphase. Flow 26 1981Google Scholar

    [36]

    Shao X, Yu Z, Sun B 2008 Phys. Fluids 20 103307Google Scholar

    [37]

    Noble D R, Torczynski J R 1998 Int. J. Modern Phys. C 9 1189Google Scholar

    [38]

    Liu J, Huang C S, Chai Z H, Shi B C 2022 Comput. Fluids 233 105240Google Scholar

    [39]

    Liu J, Chai Z H, Shi B C 2022 Phys. Rev. E 106 015306Google Scholar

    [40]

    Boyd J, Buick J, Green S 2006 J. Phys. A 39 14241Google Scholar

    [41]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newton. Fluid Mech. 157 133Google Scholar

    [42]

    Chai Z H, Shi B C, Guo Z L, Rong F M 2011 J. Non-Newton. Fluid Mech. 166 332Google Scholar

    [43]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

  • [1] Lai Yao-Yao, Chen Xin-Meng, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann method based feedback control approach for pinned spiral waves. Acta Physica Sinica, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] Xu Xin-Meng, Lou Qin. Lattice Boltzmann method for studying dynamics of single rising bubble in shear-thickening power-law fluids. Acta Physica Sinica, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [3] Liu Cheng, Liang Hong. Axisymmetric lattice Boltzmann model for three-phase fluids and its application to the Rayleigh-Plateau instability. Acta Physica Sinica, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [4] Chen Bai-Hui, Shi Bao-Chang, Wang Lei, Chai Zhen-Hua. GPU based lattice Boltzmann simulation and analysis of two-dimensional trapezoidal cavity flow. Acta Physica Sinica, 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [5] Ma Cong, Liu Bin, Liang Hong. Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension. Acta Physica Sinica, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [6] Zhang Heng, Ren Feng, Hu Hai-Bao. Transitions of power-law fluids in two-dimensional lid-driven cavity flow using lattice Boltzmann method. Acta Physica Sinica, 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [7] Hu Jia-Yi, Zhang Wen-Huan, Chai Zhen-Hua, Shi Bao-Chang, Wang Yi-Hang. Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows. Acta Physica Sinica, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [8] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] Zhou Guang-Yu, Chen Li, Zhang Hong-Yan, Cui Hai-Hang. Research on diffusiophoresis of self-propulsion Janus particles based on lattice Boltzmann method. Acta Physica Sinica, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [10] Duan Juan, Chen Yao-Qin, Zhu Qing-Yong. Electroosmotically-driven flow of power-law fluid in a micro-diffuser. Acta Physica Sinica, 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [11] Tao Shi, Wang Liang, Guo Zhao-Li. Lattice Boltzmann modeling of microscale oscillating Couette flow. Acta Physica Sinica, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [12] Shi Dong-Yan, Wang Zhi-Kai, Zhang A-Man. A novel lattice Boltzmann method for dealing with arbitrarily complex fluid-solid boundaries. Acta Physica Sinica, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] Mao Wei, Guo Zhao-Li, Wang Liang. Lattice Boltzmann simulation of the sedimentation of particles with thermal convection. Acta Physica Sinica, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [15] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [16] Su Jin, Ouyang Jie, Wang Xiao-Dong. Lattice Boltzmann method for an advective transport equation coupled with incompressible flow field. Acta Physica Sinica, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [17] Zeng Jian-Bang, Li Long-Jian, Liao Quan, Chen Qing-Hua, Cui Wen-Zhi, Pan Liang-Ming. Application of lattice Boltzmann method to phase transition process. Acta Physica Sinica, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [19] Zhang Chao-Ying, Li Hua-Bing, Tan Hui-Li, Liu Mu-Ren, Kong Ling-Jiang. Lattice Boltzmann simulations of moving elliptic cylinder in a Newtonian fluid. Acta Physica Sinica, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [20] Lü XIAO-YANG, LI HUA-BING. SIMULATION OF THERMAL VISCOUS CAVITY FLOW IN HIGH REYNOLD NUMBER BY THE LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
Metrics
  • Abstract views:  1359
  • PDF Downloads:  46
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2024
  • Accepted Date:  13 May 2024
  • Available Online:  31 May 2024
  • Published Online:  20 July 2024

/

返回文章
返回
Baidu
map