搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维不可压缩流的12速多松弛格子Boltzmann模型

胡嘉懿 张文欢 柴振华 施保昌 汪一航

引用本文:
Citation:

三维不可压缩流的12速多松弛格子Boltzmann模型

胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航

Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows

Hu Jia-Yi, Zhang Wen-Huan, Chai Zhen-Hua, Shi Bao-Chang, Wang Yi-Hang
PDF
HTML
导出引用
  • 为提高多松弛(MRT)格子Boltzmann模型的计算效率, 运用反演法提出了一个求解三维不可压缩流的12速MRT格子Boltzmann模型(iD3Q12 MRT模型). 这个模型比通常使用的D3Q13 MRT模型具有更高的计算效率. 在数值模拟部分我们把iD3Q12 MRT模型与可压缩性较小的一个13速多松弛模型(He-Luo D3Q13 MRT模型)在精确性和稳定性方面作比较. 通过模拟不同的流动, 包括压力驱动的稳态泊肃叶流、周期变化的压力驱动的非稳态脉动流、顶盖驱动的方腔流, 可以发现iD3Q12 MRT模型模拟以上三种流动时得到的数值解与解析解或与已有的结果符合很好, 这说明我们提出的iD3Q12 MRT模型是准确的. 在模拟稳态的泊肃叶流时, 两个模型计算的速度场的全局相对误差完全相同, 且两个模型都具有二阶的空间精度. 在模拟非稳态脉动流时, 大多情况下是12速模型的计算误差更小, 但在脉动流的最大压降增大时, iD3Q12 MRT模型先发散, 这说明He-Luo D3Q13 MRT模型具有更好的稳定性. 在模拟不同雷诺数下的顶盖驱动的方腔流时, He-Luo D3Q13 MRT模型也比iD3Q12 MRT模型更稳定.
    In order to improve the computational efficiency of multiple-relaxation-time lattice Boltzmann model (MRT), a 12-velocity multiple-relaxation-time lattice Boltzmann model (iD3Q12 MRT model) for three-dimensional incompressible flows is proposed in this work by using an inversion method. This model has higher computational efficiency than the commonly used D3Q13 MRT model in principle. In numerical simulations, the accuracy and stability of iD3Q12 MRT model are validated by simulating different flows, including steady Poiseuille flow driven by pressure, unsteady pulsatile flow driven by periodic pressure and lid-driven cavity flow. We also compare the iD3Q12 MRT model with the 13-velocity multiple-relaxation-time lattice Boltzmann model(He-Luo D3Q13 MRT model).For the Poiseuille flow and pulsatile flow, the numerical solutions of the iD3Q12 MRT model agree well with the analytical solutions. In terms of accuracy, the iD3Q12 MRT model and He-Luo D3Q13 MRT model are used to simulate Poiseuille flow with different parameters. The global relative errors of the two models are identical. Similarly, we also simulate the pulsatile flow to calculate the global relative errors of flow fields at different times and different lattice spacing. It is found that the global relative errors of the iD3Q12 MRT model are smaller than those of the He-Luo D3Q13 MRT model, and both models have the second-order spatial accuracy. Furthermore, we also simulate the pulsatile flow by changing the lattice spacing or relaxation time when the maximal pressure drop of the channel is increased, and it is found that the global relative errors calculated by the iD3Q12 MRT model are smaller than those by the He-Luo D3Q13 MRT model in most cases, but the iD3Q12 MRT model diverges when the maximal pressure drop of the channel is large. This indicates that the iD3Q12 MRT model is more accurate than the He-Luo D3Q13 MRT model in simulating unsteady pulsatile flow, but less stable. For the lid-driven cavity flow, the results show that the numerical results of the iD3Q12 MRT model agree well with those given by Ku et al [Ku H C, Hirsh R S, Taylor T D 1987 J. Comput. Phys. 70 439]. In terms of stability, the iD3Q12 MRT model is quantitatively less stable than He-Luo D3Q13 MRT model.
      通信作者: 张文欢, zhangwenhuan@nbu.edu.cn
    • 基金项目: 浙江省自然科学基金(批准号: LQ16A020001)、浙江省教育厅科研基金(批准号: Y201533808)、宁波市自然科学基金(批准号: 2016A610075)和宁波大学王宽诚幸福基金资助的课题
      Corresponding author: Zhang Wen-Huan, zhangwenhuan@nbu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ16A020001), the Scientific Research Foundation of the Education Department of Zhejiang Province, China (Grant No. Y201533808), the Natural Science Foundation of Ningbo, China (Grant No. 2016A610075), and the K.C. Wong Magna Fund in Ningbo University, China.
    [1]

    McNamara G R, Zanetti G 1988 Phys. Rev. Lett. 61 2332Google Scholar

    [2]

    Higuera F, Jimenez J 1989 Europhys. Lett. 9 663Google Scholar

    [3]

    Higuera F, Succi S S, Benzi R 1989 Europhys. Lett. 9 345Google Scholar

    [4]

    Abe T 1997 J. Comput. Phys. 131 241Google Scholar

    [5]

    He X Y, Luo L S 1997 Phys. Rev. E 56 6811Google Scholar

    [6]

    Shan X W, He X Y 1998 Phys. Rev. Lett. 80 65Google Scholar

    [7]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [8]

    张良奇 2014 博士学位论文 (重庆: 重庆大学)

    Zhang L Q 2014 Ph. D. Dissertation (Chongqing: Chongqing University)

    [9]

    He X Y, Shan X W, Doolen G D 1998 Phys. Rev. E 57 R13

    [10]

    Qi D W 1999 J. Fluid. Mech. 385 41Google Scholar

    [11]

    Chen S Y, Chen H D, Martínez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776Google Scholar

    [12]

    Chen X W, Shi B C 2005 Chin. Phys. Soc. 14 1398Google Scholar

    [13]

    Zhang T, Shi B C, Chai Z H 2015 64 154701Google Scholar

    Pan C X, Luo L S, Miller C T 2015 Acta Phys. Sin. 64 154701Google Scholar

    [14]

    Velivelli A C, Bryden K M 2006 Physica A 362 139Google Scholar

    [15]

    Ginzburge I 2005 Adv. Water Resour. 28 1171Google Scholar

    [16]

    Chai Z H, Shi B C, Guo Z L 2016 J. Sci. Comput. 69 355Google Scholar

    [17]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [18]

    Du R, Sun D K, Shi B C, Chai Z H 2019 Appl. Math. Comput. 358 80

    [19]

    Bhatnagar J, Gross E P, Krook M K 1954 Phys. Rev. 94 511Google Scholar

    [20]

    Qian Y, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [21]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [22]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288Google Scholar

    [23]

    He N Z, Wang N C, Shi B C, Guo Z L 2004 Chin. Phys. Soc. 13 0040Google Scholar

    [24]

    Ansumali S, Karlin I V, Ottinger H C 2003 Europhys. Lett. 63 798Google Scholar

    [25]

    Ginzburg I, Verhaeghe F, d'Humières D 2008 Commun. Comput. Phys. 3 427

    [26]

    Ginzburg I, Verhaeghe F, d'Humières D 2008 Commun. Comput. Phys. 3 519

    [27]

    d'Humières D 1992 AIAA J. 159 450

    [28]

    d'Humières D 2002 Phil. Trans. R. Soc. Lond. A 360 437Google Scholar

    [29]

    d'Humières D, Bouzidi M'hamed, Lallemand P 2001 Phys. Rev. E 63 066702Google Scholar

    [30]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546Google Scholar

    [31]

    Du R, Shi B C, Chen X W 2006 Phys. Lett. A 359 564Google Scholar

    [32]

    Du R, Shi B C 2009 Int. J. Mod. Phys. C 20 1023Google Scholar

    [33]

    Zhang W H, Shi B C, Wang Y H 2015 Comput. Math. Appl. 69 997Google Scholar

    [34]

    Suga K, Kuwata Y, Takashima K, Chikasue R 2015 Comput. Math. Appl. 69 518Google Scholar

    [35]

    Luo L S, Liao W, Chen X W, Peng Y, Zhang W 2011 Phys. Rev. E 83 056710Google Scholar

    [36]

    Kang S K, Hassan Y A 2013 J. Comput. Phys. 232 100Google Scholar

    [37]

    Peng C, Nicholas G, Guo Z L, Wang L P 2018 J. Comput. Phys. 357 16Google Scholar

    [38]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [39]

    White F M 2005 Viscous Fluid Flow (3rd Ed.) (New York: McGraw-Hill) p135

    [40]

    O'Brien V 1975 J. Franklin I. 300 225Google Scholar

    [41]

    Ku H C, Hirsh R S, Taylor T D 1987 J. Comput. Phys. 70 439Google Scholar

  • 图 1  三维泊肃叶流示意图

    Fig. 1.  The schematic of three-dimensional Poiseuille flow.

    图 2  泊肃叶流数值解与解析解的对比 (a) 泊肃叶流在$x=1$截面处z取不同的值时水平速度$u_{x}$y变化的函数图像; (b) 在截面$z=0$y取不同的值时压力px变化的函数图像; 直线: 解析解; 符号: 数值解; 松弛因子$\lambda_{\nu}=1.3$

    Fig. 2.  Comparison between numerical and analytical solutions of Poiseuille flow: (a) The variation of $u_{x}$ with y for different locations of z at section $x=1$ for Poiseuille flow; (b) the variation of pressure with x for different locations of y at section $z=0$ for Poiseuille flow. Lines, analytical solutions; symbols, numerical results; the relaxation parameter ${\lambda}_{\nu}=1.3$.

    图 3  不同的$\lambda_{\nu}$下, 模拟泊肃叶流得到的速度场的全局相对误差${\rm {GRE}}_u$随空间步长$\text{δ}{x}$的变化, 符号代表数值解, 连线表示拟合直线

    Fig. 3.  The variation of ${\rm {GRE}}_u$ of velocity field with the lattice spacing $\text{δ}{x}$ at different $\lambda_{\nu}$ for Poiseuille flow. Symbols represent numerical solutions, lines represent fitting line.

    图 4  $\eta=2.8285$时脉动流在$x=1$, $z=0$处水平速度uxy变化的函数. 直线: 解析解; 符号: 数值解

    Fig. 4.  The variation of horizontal velocity ux with y for pulsatile flow at the location $x=1$, $z=0$, $\eta=2.8285$. Line, analytical solutions; symbols, numerical solutions.

    图 5  同一周期四个不同时刻下变量${\rm {GRE}}_u$随空间步长$\text{δ}{x}$的变化

    Fig. 5.  The variation of ${\rm {GRE}}_u$ with the lattice spacing at four different times in a period for pulsatile flow.

    图 6  三维顶盖驱动的方腔流示意图

    Fig. 6.  The schematic of three-dimensional lid-driven cavity flow

    图 7  不同的雷诺数下模拟方腔流, 在截面$z=0.5$处竖直和水平中心线的速度分布 (a) Re = 100; (b) $Re=400$; (c) $Re=1000$

    Fig. 7.  The velocity distribution in the vertical and horizontal center lines at section $z=0.5$ for cavity flows at different $Re$: (a) $Re=100$; (b) $Re=400$; (c) $Re=1000$.

    表 1  iD3Q12 MRT和D3Q13 MRT模型在不同松弛因子${\lambda}_{\nu}$和不同空间步长下计算得到的泊肃叶流的速度场的全局相对误差${\rm GRE}_u$

    Table 1.  The ${\rm GRE}_u$ of velocity field for Poiseuille flow computed by iD3Q12 MRT and D3Q13 MRT models under different relaxation parameters and different lattice spacings.

    ${\rm GRE}_u$Lattice spacing $\text{δ} x$Model
    1/81/161/321/64
    ${\lambda}_{\nu}=0.8,$ ${\lambda}'_{\nu}=1.143$$3.090\times10^{-2}$$7.700\times10^{-3}$$1.900\times10^{-3}$$4.623\times10^{-4}$iD3Q12 MRT
    $3.090\times10^{-2}$$7.700\times10^{-3}$$1.900\times10^{-3}$$4.623\times10^{-4}$D3Q13 MRT
    ${\lambda}_{\nu}=1.0,$ ${\lambda}'_{\nu}=1.333$$5.990\times10^{-2}$$1.660\times10^{-2}$$4.400\times10^{-3}$$1.100\times10^{-3}$iD3Q12 MRT
    $5.990\times10^{-2}$$1.660\times10^{-2}$$4.400\times10^{-3}$$1.100\times10^{-3}$D3Q13 MRT
    ${\lambda}_{\nu}=1.3,$ ${\lambda}'_{\nu}=1.576$$8.720\times10^{-2}$$2.500\times10^{-2}$$6.700\times10^{-3}$$1.700\times10^{-3}$iD3Q12 MRT
    $8.720\times10^{-2}$$2.500\times10^{-2}$$6.700\times10^{-3}$$1.700\times10^{-3}$D3Q13 MRT
    下载: 导出CSV

    表 2  $\eta=2.8285$时, 不同空间步长下用iD3Q12 MRT模型和D3Q13 MRT模型模拟脉动流所得的不同时刻下的速度场的全局相对误差${\rm GRE}_u$

    Table 2.  The global relative errors of the velocity field at different times for pulsatile flow simulated by iD3Q12 MRT and D3Q13 MRT models at different lattice spacings, $\eta=2.8285$.

    Lattice spacing${\rm GRE}_u$Model
    $T/4$$T/2$$3 T/4$T
    ${\rm{\text{δ}} } x= {1}/{20}$$1.483\times10^{-2}$$4.214\times10^{-2}$$1.805\times10^{-2}$$4.028\times10^{-2}$iD3Q12 MRT
    $1.662\times10^{-2}$$4.733\times10^{-2}$$2.118\times10^{-2}$$4.299\times10^{-2}$D3Q13 MRT
    ${\rm{\text{δ}} } x= {1}/{40}$$3.803\times10^{-3}$$1.199\times10^{-2}$$4.651\times10^{-3}$$1.153\times10^{-2}$iD3Q12 MRT
    $4.172\times10^{-3}$$1.324\times10^{-2}$$5.398\times10^{-3}$$1.217\times10^{-2}$D3Q13 MRT
    ${\rm{\text{δ}} } x= {1}/{60}$$1.702\times10^{-3}$$5.569\times10^{-3}$$2.085\times10^{-3}$$5.369\times10^{-3}$iD3Q12 MRT
    $1.855\times10^{-3}$$6.116\times10^{-3}$$2.412\times10^{-3}$$5.648\times10^{-3}$D3Q13 MRT
    ${\rm{\text{δ}} } x= {1}/{80}$$9.605\times10^{-4}$$3.204\times10^{-3}$$1.177\times10^{-3}$$3.092\times10^{-3}$iD3Q12 MRT
    $1.043\times10^{-3}$$3.509\times10^{-3}$$1.360\times10^{-3}$$3.247\times10^{-3}$D3Q13 MRT
    下载: 导出CSV

    表 3  相邻空间步长下的iD3Q12 MRT和D3Q13 MRT模型的空间精度的阶

    Table 3.  The orders of the spatial accuracy of iD3Q12 MRT and D3Q13 MRT models under adjacent spacings.

    Adjacent spacingOrderModel
    $T/4$$T/2$$3 T/4$T
    Average1.9781.8751.9741.869iD3Q12 MRT
    1.9981.8911.9841.879D3Q13 MRT
    ${1}/{20} \to {1}/{40}$1.9631.8131.9561.805iD3Q12 MRT
    1.9941.8381.9721.821D3Q13 MRT
    ${1}/{40}\to {1}/{60}$1.9831.8911.9791.885iD3Q12 MRT
    1.9991.9051.9871.893D3Q13 MRT
    ${1}/{60} \to {1}/{80}$1.9891.9221.9881.918iD3Q12 MRT
    2.0011.9311.9921.924D3Q13 MRT
    下载: 导出CSV

    表 4  $\tau=0.5667$, $\eta=4.3416$, 最大压差$\Delta{p}$增大时不同的空间步长下由iD3Q12 MRT和D3Q13 MRT模型模拟的脉动流在时刻T下的速度场所计算的全局相对误差${\rm GRE}_u$, 空白处表示计算发散

    Table 4.  The global relative error calculated by the velocity field at time T of pulsatile flow simulated by the iD3Q12 MRT and D3Q13 MRT models under different lattice spacings. The maximal pressure drop $ \Delta{p} $ of the channel increases, $\tau=0.5567$, $\eta=4.3416$ are fixed. The blank indicates that the computation is divergent.

    $ \Delta p $Lattice spacing ${\rm{\text{δ}} } x$Model
    1/201/401/601/80
    $0.005 $$9.919\times10^{-2}$$3.030\times10^{-2}$$1.442\times10^{-2}$$8.402\times10^{-3}$iD3Q12 MRT
    $1.121\times10^{-1}$$3.326\times10^{-2}$$1.568\times10^{-2}$$9.084\times10^{-3}$D3Q13 MRT
    $0.010$$1.172\times10^{-1}$$3.445\times10^{-2}$$1.618\times10^{-2}$$9.362\times10^{-3}$iD3Q12 MRT
    $1.679\times10^{-1}$$4.763\times10^{-2}$$2.199\times10^{-2}$$1.260\times10^{-2}$D3Q13 MRT
    $0.020$$1.777\times10^{-1}$$5.110\times10^{-2}$$2.365\times10^{-2}$$1.355\times10^{-2}$iD3Q12 MRT
    $2.940\times10^{-1}$$8.630\times10^{-2}$$3.987\times10^{-2}$$2.279\times10^{-2}$D3Q13 MRT
    $0.050$$1.243\times10^{-1}$$5.848\times10^{-2}$$3.386\times10^{-2}$iD3Q12 MRT
    $2.025\times10^{-1}$$9.868\times10^{-2}$$5.757\times10^{-2}$D3Q13 MRT
    $0.080$$6.073\times10^{-2}$iD3Q12 MRT
    $1.575\times10^{-2}$$9.405\times10^{-2}$D3Q13 MRT
    $0.100$iD3Q12 MRT
    $1.192\times10^{-1}$D3Q13 MRT
    $0.120$iD3Q12 MRT
    $1.454\times10^{-1}$D3Q13 MRT
    下载: 导出CSV

    表 5  ${\rm{\text{δ}}} {x}={1}/{20}$时, 最大压差$\Delta{p}$增大时不同的松弛时间τ下由iD3Q12 MRT和D3Q13 MRT模型模拟的脉动流由T时刻的速度场计算得出的全局相对误差${\rm GRE}_u$, 空白处表示计算发散

    Table 5.  The global relative error of the velocity field at time T of the pulsatile flow simulated by the iD3Q12 MRT and D3Q13 MRT models under different relaxation time τ. The maximal pressure drop of the channel is increased and ${\rm{\text{δ}}}{x}={1}/{20}$ is fixed. The blank indicates that the computation is divergent.

    $\Delta p$τModel
    0.550.600.700.90
    $0.005 $$1.302\times10^{-1}$$6.311\times10^{-2}$$2.955\times10^{-2}$$1.744\times10^{-2}$iD3Q12 MRT
    $1.556\times10^{-1}$$6.560\times10^{-3}$$3.023\times10^{-2}$$1.993\times10^{-2}$D3Q13 MRT
    $0.010$$1.612\times10^{-1}$$6.830\times10^{-2}$$2.711\times10^{-2}$$1.736\times10^{-2}$iD3Q12 MRT
    $2.435\times10^{-1}$$8.735\times10^{-2}$$2.661\times10^{-2}$$2.058\times10^{-2}$D3Q13 MRT
    $0.020$$2.475\times10^{-1}$$9.926\times10^{-2}$$2.624\times10^{-2}$$1.656\times10^{-2}$iD3Q12 MRT
    $4.182\times10^{-1}$$1.542\times10^{-1}$$2.757\times10^{-2}$$2.195\times10^{-2}$D3Q13 MRT
    $0.030$$1.430\times10^{-1}$$3.421\times10^{-2}$$1.509\times10^{-2}$iD3Q12 MRT
    $5.482\times10^{-1}$$2.193\times10^{-1}$$3.616\times10^{-2}$$2.343\times10^{-2}$D3Q13 MRT
    $0.040$$5.001\times10^{-2}$$1.349\times10^{-2}$iD3Q12 MRT
    $4.693\times10^{-2}$$2.502\times10^{-2}$D3Q13 MRT
    $0.050$$1.291\times10^{-2}$iD3Q12 MRT
    $2.674\times10^{-2}$D3Q13 MRT
    下载: 导出CSV

    表 6  不断增大雷诺数比较iD3Q12 MRT和He-Luo D3Q13 MRT模型在模拟方腔流时的稳定性. $\checkmark$代表收敛, 收敛准则是(39)式

    Table 6.  Comparing the stability of iD3Q12 MRT and He-Luo D3Q13 MRT models for three-dimensional cavity flows when the Reynolds number is continuously increased. The tick represents convergence, the convergence criterion is formula (39).

    ReModel
    iD3Q12 MRTHe-Luo D3Q13 MRT
    100$\checkmark$$\checkmark$
    400$\checkmark$$\checkmark$
    1000$\checkmark$$\checkmark$
    1500$\checkmark$$\checkmark$
    1600$\checkmark$$\checkmark$
    1700divergent$\checkmark$
    1800divergentdivergent
    下载: 导出CSV
    Baidu
  • [1]

    McNamara G R, Zanetti G 1988 Phys. Rev. Lett. 61 2332Google Scholar

    [2]

    Higuera F, Jimenez J 1989 Europhys. Lett. 9 663Google Scholar

    [3]

    Higuera F, Succi S S, Benzi R 1989 Europhys. Lett. 9 345Google Scholar

    [4]

    Abe T 1997 J. Comput. Phys. 131 241Google Scholar

    [5]

    He X Y, Luo L S 1997 Phys. Rev. E 56 6811Google Scholar

    [6]

    Shan X W, He X Y 1998 Phys. Rev. Lett. 80 65Google Scholar

    [7]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [8]

    张良奇 2014 博士学位论文 (重庆: 重庆大学)

    Zhang L Q 2014 Ph. D. Dissertation (Chongqing: Chongqing University)

    [9]

    He X Y, Shan X W, Doolen G D 1998 Phys. Rev. E 57 R13

    [10]

    Qi D W 1999 J. Fluid. Mech. 385 41Google Scholar

    [11]

    Chen S Y, Chen H D, Martínez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776Google Scholar

    [12]

    Chen X W, Shi B C 2005 Chin. Phys. Soc. 14 1398Google Scholar

    [13]

    Zhang T, Shi B C, Chai Z H 2015 64 154701Google Scholar

    Pan C X, Luo L S, Miller C T 2015 Acta Phys. Sin. 64 154701Google Scholar

    [14]

    Velivelli A C, Bryden K M 2006 Physica A 362 139Google Scholar

    [15]

    Ginzburge I 2005 Adv. Water Resour. 28 1171Google Scholar

    [16]

    Chai Z H, Shi B C, Guo Z L 2016 J. Sci. Comput. 69 355Google Scholar

    [17]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [18]

    Du R, Sun D K, Shi B C, Chai Z H 2019 Appl. Math. Comput. 358 80

    [19]

    Bhatnagar J, Gross E P, Krook M K 1954 Phys. Rev. 94 511Google Scholar

    [20]

    Qian Y, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [21]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [22]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288Google Scholar

    [23]

    He N Z, Wang N C, Shi B C, Guo Z L 2004 Chin. Phys. Soc. 13 0040Google Scholar

    [24]

    Ansumali S, Karlin I V, Ottinger H C 2003 Europhys. Lett. 63 798Google Scholar

    [25]

    Ginzburg I, Verhaeghe F, d'Humières D 2008 Commun. Comput. Phys. 3 427

    [26]

    Ginzburg I, Verhaeghe F, d'Humières D 2008 Commun. Comput. Phys. 3 519

    [27]

    d'Humières D 1992 AIAA J. 159 450

    [28]

    d'Humières D 2002 Phil. Trans. R. Soc. Lond. A 360 437Google Scholar

    [29]

    d'Humières D, Bouzidi M'hamed, Lallemand P 2001 Phys. Rev. E 63 066702Google Scholar

    [30]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546Google Scholar

    [31]

    Du R, Shi B C, Chen X W 2006 Phys. Lett. A 359 564Google Scholar

    [32]

    Du R, Shi B C 2009 Int. J. Mod. Phys. C 20 1023Google Scholar

    [33]

    Zhang W H, Shi B C, Wang Y H 2015 Comput. Math. Appl. 69 997Google Scholar

    [34]

    Suga K, Kuwata Y, Takashima K, Chikasue R 2015 Comput. Math. Appl. 69 518Google Scholar

    [35]

    Luo L S, Liao W, Chen X W, Peng Y, Zhang W 2011 Phys. Rev. E 83 056710Google Scholar

    [36]

    Kang S K, Hassan Y A 2013 J. Comput. Phys. 232 100Google Scholar

    [37]

    Peng C, Nicholas G, Guo Z L, Wang L P 2018 J. Comput. Phys. 357 16Google Scholar

    [38]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [39]

    White F M 2005 Viscous Fluid Flow (3rd Ed.) (New York: McGraw-Hill) p135

    [40]

    O'Brien V 1975 J. Franklin I. 300 225Google Scholar

    [41]

    Ku H C, Hirsh R S, Taylor T D 1987 J. Comput. Phys. 70 439Google Scholar

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制.  , 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用.  , 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [3] 陈百慧, 施保昌, 汪垒, 柴振华. 基于GPU的二维梯形空腔流的格子Boltzmann模拟与分析.  , 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [4] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟.  , 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [5] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维气泡群熟化过程模拟.  , 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [6] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维汽泡群熟化过程模拟.  , 2022, (): . doi: 10.7498/aps.71.20212183
    [7] 张恒, 任峰, 胡海豹. 基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究.  , 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [8] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型.  , 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法.  , 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [10] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [11] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟.  , 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [12] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法.  , 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟.  , 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究.  , 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [15] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟.  , 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [16] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用.  , 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象.  , 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [18] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流.  , 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  9281
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 修回日期:  2019-09-14
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回
Baidu
map