-
In this paper, a novel shared-aperture method of electromagnetic metasurface and antenna is proposed to obtain low radar-cross-section (RCS) performance. In this method, the low-RCS metasurface is first designed, then this metasurface is combined with traditional antenna to obtain novel low-RCS antenna based on shared-aperture technique. Besides, the analysis and corresponding local structure modification are also conducted to ensure that the antenna has good radiation performance while reducing broadband RCS. Using this method, a dual-layer polarization rotation unit cell is first proposed and its broadband working principle is investigated by both theoretical analysis and numerical comparison. Based on this unit cell, a broadband low-RCS metasurface is constructed. Then an initial shared-aperture metasurface antenna is obtained by substituting the middle cells in the metasurface with traditional patch antenna directly. Through careful analysis of surface current in radiation mode, the gain decrease of this metasurface antenna is revealed. On this basis, a finite removal strategy is put forward and some metasurface cells in the antenna are removed by using the electric current analysis. Consequently, an improved shared-aperture metasurface antenna is proposed. This improved antenna works in a frequency range from 6.3 to 7.48 GHz, which is slightly wider than the traditional patch antenna. Its gain is also higher than that of traditional antenna, with a maximum improvement of 1 dB. Meanwhile, the apparent RCS decreases from 6 to 16 GHz for any polarized incident wave, and the reduction peak is larger than 20 dB. Finally, fabrications and measurements are conducted. The measurement results and numerical calculations are in good agreement. The well-behaved radiation performance and broadband low-RCS property of this metasurface antenna verify the effectiveness of the proposed method. Unlike most of reported design methods of low-RCS antennas directly from traditional antennas, the proposed method adopts reverse thinking to transform scattering optimization into radiation optimization, realizing the integration between metasurface and antenna, thus making low-RCS antenna design easier and faster.
-
Keywords:
- electromagnetic metasurface /
- antenna /
- shared-aperture technique /
- low radar cross section
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[2] Cui T 2017 J. Opt. 19 084004
Google Scholar
[3] Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microwaves Antennas Propag. 13 185
Google Scholar
[4] Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206
Google Scholar
[5] Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wirel. Propag. Lett. 19 982
Google Scholar
[6] Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96
Google Scholar
[7] Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. Express Briefs 70 76
Google Scholar
[8] Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422
Google Scholar
[9] Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058
Google Scholar
[10] Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508
Google Scholar
[11] Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wirel. Propag. Lett. 15 448
Google Scholar
[12] Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422
Google Scholar
[13] Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67
Google Scholar
[14] Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wirel. Propag. Lett. 22 665
Google Scholar
[15] Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325
Google Scholar
[16] Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692
Google Scholar
[17] 冯奎胜, 李娜, 杨欢欢 2021 70 194101
Google Scholar
Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101
Google Scholar
[18] Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479
Google Scholar
[19] Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 68 7927
Google Scholar
[20] Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582
Google Scholar
[21] Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582
Google Scholar
[22] Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955
Google Scholar
[23] Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834
Google Scholar
[24] Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663
Google Scholar
[25] Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644
Google Scholar
[26] Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975
Google Scholar
[27] Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 768
Google Scholar
[28] Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239
Google Scholar
[29] Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075
Google Scholar
[30] Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626
Google Scholar
[31] Ren J Y, Jiang W, Gong S X 2018 IEEE Microwaves Antennas Propag. 12 1793
Google Scholar
[32] Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561
Google Scholar
-
图 6 天线辐射性能对比 (a) 反射系数; (b) 增益; (c)—(f) 三维辐射方向图, 其中(c), (e) 传统天线, (d), (f) 共享孔径天线2; (g), (h) 二维辐射方向图
Figure 6. Radiation performance comparison of the antennas: (a) Reflection coefficient; (b) gain; (c)–(f) 3D radiation patterns, (c), (e) conventional antenna, (d), (f) shared-aperture antenna 2; (g), (h) 2D radiation patterns.
图 9 斜入射下天线双站RCS对比 (a) θinc = 30°, φinc = 0°, θsca = 30°, φsca = 180°; (b) θinc = 30°, φinc = 90°, θsca = 30°, φsca = 270°; (c) θinc = 30°, φinc = 315°, θsca = 30°, φsca = 135°; (d) θinc = 60°, φinc = 0°, θsca = 30°, φsca = 180°; (e) θinc = 60°, φinc = 90°, θsca = 30°, φsca = 270°; (f) θinc = 60°, φinc = 315°, θsca = 30°, φsca = 135°
Figure 9. Bistatic RCS under different polarized oblique incidences: (a) θinc = 30°, φinc = 0°, θsca = 30°, φsca = 180°; (b) θinc = 30°, φinc = 90°, θsca = 30°, φsca = 270°; (c) θinc = 30°, φinc = 315°, θsca = 30°, φsca = 135°; (d) θinc = 60°, φinc = 0°, θsca = 30°, φsca = 180°; (e) θinc = 60°, φinc = 90°, θsca = 30°, φsca = 270°; (f) θinc = 60°, φinc = 315°, θsca = 30°, φsca = 135°.
表 1 本文设计共享孔径天线2与已有文献天线比较
Table 1. Comparison of shared-aperture antenna 2 in this work and antennas in previous work.
-
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[2] Cui T 2017 J. Opt. 19 084004
Google Scholar
[3] Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microwaves Antennas Propag. 13 185
Google Scholar
[4] Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206
Google Scholar
[5] Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wirel. Propag. Lett. 19 982
Google Scholar
[6] Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96
Google Scholar
[7] Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. Express Briefs 70 76
Google Scholar
[8] Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422
Google Scholar
[9] Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058
Google Scholar
[10] Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508
Google Scholar
[11] Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wirel. Propag. Lett. 15 448
Google Scholar
[12] Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422
Google Scholar
[13] Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67
Google Scholar
[14] Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wirel. Propag. Lett. 22 665
Google Scholar
[15] Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325
Google Scholar
[16] Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692
Google Scholar
[17] 冯奎胜, 李娜, 杨欢欢 2021 70 194101
Google Scholar
Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101
Google Scholar
[18] Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479
Google Scholar
[19] Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 68 7927
Google Scholar
[20] Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582
Google Scholar
[21] Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582
Google Scholar
[22] Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955
Google Scholar
[23] Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834
Google Scholar
[24] Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663
Google Scholar
[25] Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644
Google Scholar
[26] Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975
Google Scholar
[27] Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 768
Google Scholar
[28] Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239
Google Scholar
[29] Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075
Google Scholar
[30] Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626
Google Scholar
[31] Ren J Y, Jiang W, Gong S X 2018 IEEE Microwaves Antennas Propag. 12 1793
Google Scholar
[32] Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561
Google Scholar
Catalog
Metrics
- Abstract views: 3096
- PDF Downloads: 116
- Cited By: 0