Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of interfacial electronic structure on conductivity and space charge characteristics of core-shell quantum dots/polyethylene nanocomposite insulation

Wang He-Yu Li Zhong-Lei Du Bo-Xue

Citation:

Effect of interfacial electronic structure on conductivity and space charge characteristics of core-shell quantum dots/polyethylene nanocomposite insulation

Wang He-Yu, Li Zhong-Lei, Du Bo-Xue
PDF
HTML
Get Citation
  • To investigate the effect of the interface electronic structure of core-shell quantum dots on the conductivity and space charge characteristics of polyethylene insulation, nanocomposite insulations, namely CdSe@ZnS/LDPE and ZnSe@ZnS/LDPE, are synthesized. The study focuses on elucidating the evolution patterns of DC conductivity and space charge in the nanocomposite insulation, and analyzing the effect of the interfacial electronic structure of core-shell quantum dots on the distribution of charge traps. Comparative analysis reveals that in contrast to LDPE insulation, ZnSe@ZnS/LDPE nanocomposite insulation demonstrates a substantial reduction in DC conductivity by 47.2% and a decrease in space charge accumulation by 40.3% under the conditions of elevated temperature and strong electric field. The increase of trap energy level means an enhanced trap effect on charger carriers. According to density functional theory, the band structure characteristics of core-shell quantum dots integrated with polyethylene are computationally assessed. The findings underscore that the band misalignment at the core-shell interface and the shell-insulation interface induces shifts in the conduction band bottom and at the valence band top, respectively. These shifts impose a confinement effect on electrons and holes, with the extent of this effect escalating with the augment of the difference in band gap between the core layer and the shell layer. Consequently, this phenomenon curtails carrier migration, thereby inhibiting space charge accumulation under the conditions of elevated temperature and strong electric fields.
      Corresponding author: Li Zhong-Lei, lizhonglei@tju.edu.cn ; Du Bo-Xue, duboxue@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52077148), the Joint Fund of the National Natural Science Foundation of China and the Smart Grid (Grant No. U1966203), and the Major Project of Science and Technology Department of Yunnan Province, China (Grant No. 202202AC080002).
    [1]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [2]

    Li Z L, Du B X 2018 IEEE Electr. Insul. Mag. 34 30Google Scholar

    [3]

    杜伯学, 韩晨磊, 李进, 李忠磊 2019 电工技术学报 34 179Google Scholar

    Du B X, Han C L, Li J, Li Z L 2019 Trans. Chin. Electrotech. Soc. 34 179Google Scholar

    [4]

    何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417Google Scholar

    He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417Google Scholar

    [5]

    Mazzanti G, Diban B 2021 IEEE Trans. Power Delivery 36 3784Google Scholar

    [6]

    Lewis T J 2014 IEEE Trans. Dielectr. Electr. Insul. 21 497Google Scholar

    [7]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [8]

    Takada T, Hayase Y, Tanaka Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152Google Scholar

    [9]

    Zhu X, Wu J, Wang Y, Yin Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 450Google Scholar

    [10]

    Li S T, Zhao N, Nie Y J, Wang X, Chen G, Teyssedre G 2015 IEEE Trans. Dielectr. Electr. Insul. 22 92Google Scholar

    [11]

    Ye C, Zhang D S, Chen B, Tung C H, Wu L Z 2023 Chem. Phys. Rev. 4 011304Google Scholar

    [12]

    Han C L, Du B X, Li J, Li Z L, Tanaka T 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1204Google Scholar

    [13]

    Yang M, Wang S, Fu J, Zhu Y, Liang J, Cheng S, Hu S, Hu J, He J, Li Q 2023 Adv. Mater. 35 2301936Google Scholar

    [14]

    Smith A M, Lane L A, Nie S M 2014 Nat. Commun. 5 4506Google Scholar

    [15]

    Tanaka T 2019 IEEE Trans. Dielectr. Electr. Insul. 26 276Google Scholar

    [16]

    Lei Z P, Fabiani D, Bray T, Li C Y, Wang X Y, Andritsch T, Credi A, La Rosa M 2021 IEEE Trans. Dielectr. Electr. Insul. 28 753Google Scholar

    [17]

    Moyassari A, Unge M, Hedenqvist M S, Gedde U W, Nilsson F 2017 J. Chem. Phys. 146 204901Google Scholar

    [18]

    Chen X, Zhao A X, Li J M, Deng J B, Zhang G J, Zhao X F 2019 J. Appl. Phys. 126 035101Google Scholar

    [19]

    Lü Z P, Ma Y T, Zhang C, Peng J Y, Wu K, Dissado L A 2021 IEEE Trans. Dielectr. Electr. Insul. 28 616Google Scholar

    [20]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [21]

    Cheng S, Zhou Y, Li Y, Yuan C, Yang M, Fu J, Hu J, He J, Li Q 2021 Energy Storage Mater. 42 445Google Scholar

    [22]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [23]

    Emtage P R, Tantraporn W 1962 Phys. Rev. Lett. 8 267Google Scholar

    [24]

    Hoang A T, Pallon L, Liu D, Serdyuk Y V, Gubanski S M, Gedde U W 2016 Polymers 8 87Google Scholar

    [25]

    Zhou L, Wang X, Zhang Y, Zhang P, Li Z 2019 Materials 12 2657Google Scholar

    [26]

    Akram S, Bhutta M S, Zhou K, Meng P F, Castellon J, Wang P, Rasool G, Aamir M, Nazir M T 2021 IEEE Trans. Dielectr. Electr. Insul. 28 1514Google Scholar

    [27]

    Fishchuk I I, Kadashchuk A K, Vakhnin A, Korosko Y, Bässler H, Souharce B, Scherf U 2006 Phys. Rev. B 73 115210Google Scholar

    [28]

    Li C, Duan L, Li H, Qiu Y 2014 J. Phys. Chem. C 118 10651Google Scholar

    [29]

    屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁 2012 61 01704Google Scholar

    Tu D M, Wang X, Lv Z P, Wu K, Peng Z R 2012 Acta Phys. Sin. 61 01704Google Scholar

    [30]

    张睿智, 陈文灏, 杨璐娜 2012 61 187201Google Scholar

    Zhang R Z, Chen W H, Yang L N 2012 Acta Phys. Sin. 61 187201Google Scholar

    [31]

    Hewa-Kasakarage N N, Kirsanova M, Nemchinov A, Schmall N, El-Khoury P Z, Tarnovsky A N, Zamkov M 2009 J. Am. Chem. Soc. 131 1320Google Scholar

    [32]

    Chen X H, Chen Y T, Ren F F, Gu S L, Tan H H, Jagadish C, Ye J D 2019 Appl. Phys. Lett. 115 202101Google Scholar

  • 图 1  核壳量子点/聚乙烯纳米复合绝缘制备流程

    Figure 1.  Preparation method of quantum dots/PE composite insulation.

    图 2  核壳量子点/聚乙烯复合绝缘的理化性能表征(1 cps = 1 counts/s) (a) CdSe@ZnS量子点TEM图; (b) CdSe@ZnS量子点粒径分布; (c) ZnSe@ZnS量子点TEM图; (d) ZnSe@ZnS量子点粒径分布; (e) QD1/PE绝缘TEM图; (f) QD1/PE绝缘EDS谱图; (g) QD2/PE绝缘TEM图; (h) QD2/PE绝缘EDS谱图; (i) 核壳量子点/聚乙烯复合绝缘XPS全谱; (j)—(m) Cd, Zn, Se和S元素精细谱; (n) 核壳量子点/聚乙烯复合绝缘UV-Vis吸收谱; (o)—(q) 核壳量子点/聚乙烯复合绝缘光学带隙

    Figure 2.  Characterization of physical and chemical properties of core-shell quantum dots/polyethylene composite insulation: (a) TEM of CdSe@ZnS QDs; (b) particle size distribution of CdSe@ZnS QDs; (c) TEM of ZnSe@ZnS QDs; (d) particle size distribution of ZnSe@ZnS QDs; (e) TEM of QD1/PE insulation; (f) EDS of QD1/PE insulation; (g) TEM of QD2/PE insulation; (h) EDS of QD2/PE insulation; (i) XPS full spectra of composite insulation; (j)–(m) XPS fine spectra of Cd, Zn, Se, and S; (n) UV-Vis absorption spectra of composite insulation; (o)–(q) optical gap of composite insulation.

    图 3  聚乙烯绝缘和核壳量子点/聚乙烯复合绝缘的电导特性 (a)—(c) PE, QD1/PE和QD2/PE绝缘电导特性; (d)—(f) 基于跳跃电导模型的PE, QD1/PE和QD2/PE绝缘电导特性; (g)—(i) 基于P-F发射效应的PE, QD1/PE和QD2/PE绝缘电导特性; (j)—(l) 基于肖特基发射效应的PE, QD1/PE和QD2/PE绝缘电导特性

    Figure 3.  Conductivity characteristics of polyethylene insulation and core-shell quantum dot/polyethylene composite insulation: (a)–(c) Current density characteristics of PE, QD1/PE and QD2/PE insulation; (d)–(f) conductivity characteristics of PE, QD1/PE and QD2/PE insulation based on hopping conductivity model; (g)–(i) conductivity characteristics of PE, QD1/PE and QD2/PE insulation based on P-F emission effect; (j)–(l) conductivity characteristics of PE, QD1/PE and QD2/PE insulation based on Schottky emission effect.

    图 4  聚乙烯绝缘和核壳量子点/聚乙烯复合绝缘的空间电荷特性 (a) PE绝缘极化过程; (b) QD1/PE绝缘极化过程; (c) QD2/PE绝缘极化过程; (d) 极化过程平均空间电荷密度变化情况; (e) PE绝缘去极化过程; (f) QD1/PE绝缘去极化过程; (g) QD2/PE绝缘去极化过程; (h) 去极化过程平均空间电荷密度变化情况

    Figure 4.  Space charge characteristics of polyethylene insulation and core-shell quantum dot/polyethylene composite insulation: (a) Polarization of PE insulation; (b) polarization of QD1/PE insulation; (c) polarization of QD2/PE insulation; (d) average space charge density during the polarization process; (e) depolarization process of PE insulation; (f) depolarization process of QD1/PE insulation; (g) depolarization process of QD2/PE insulation; (h) average space charge density during the depolarization process.

    图 5  聚乙烯绝缘和核壳量子点/聚乙烯复合绝缘的陷阱特性

    Figure 5.  Trap characteristics of polyethylene insulation and core-shell quantum dots/polyethylene composite insulation.

    图 6  核壳量子点与聚乙烯绝缘的能带结构与态密度 (a) CdSe晶体模型; (b) CdSe能带结构与态密度; (c) ZnSe晶体模型; (d) ZnSe能带结构与态密度; (e) ZnS晶体模型; (f) ZnS能带结构与态密度; (g) PE晶体模型; (h) PE能带结构与态密度

    Figure 6.  Band structures and density of states of core-shell quantum dots and polyethylene: (a) CdSe crystal model; (b) CdSe band structure and DOS; (c) ZnSe crystal model; (d) ZnSe band structure and DOS; (e) ZnS crystal model; (f) ZnS band structure and DOS; (g) PE crystal model; (h) PE band structure and DOS.

    图 7  核壳量子点/聚乙烯绝缘的界面结合能、差分电荷密度与界面能带结构 (a) 不同界面的结合能变化情况; (b) ZnS-聚乙烯界面的差分电子密度; (c) CdSe-ZnS界面的差分电子密度; (d) ZnSe-ZnS界面的差分电子密度; (e) PE-ZnS界面能带结构; (f) CdSe-ZnS界面能带结构; (g) ZnSe-ZnS界面能带结构

    Figure 7.  Binding energy, electron density difference, and band structure of interface for core-shell quantum dot/polyethylene insulation: (a) Binding energy of different interfaces; (b) electron density difference between ZnS and PE; (c) electron density difference between CdSe and ZnS; (d) electron density difference between ZnSe and ZnS; (e) band structure between PE and ZnS; (f) band structure between CdSe and ZnS; (g) band structure between ZnSe and ZnS.

    图 8  核壳量子点界面结构对聚乙烯绝缘中载流子迁移的影响

    Figure 8.  Effect of interface structure with core-shell quantum dots on carrier migration in polyethylene-based insulation.

    表 1  核壳量子点与聚乙烯的能带结构特征

    Table 1.  Band characteristics of core-shell quantum dots and polyethylene.

    结构 能带间隙
    Eg/eV
    带隙类型 电子有效质量
    $m_{\rm n}^*{\mathrm{ /a.u.}}$
    空穴有效质量
    $m_{\rm p}^*{\mathrm{ /a.u.}}$
    电子亲和能
    χ/eV
    功函数
    W/eV
    CdSe 2.06 直接带隙 0.14 0.39 4.85 5.38
    ZnSe 2.77 直接带隙 0.18 0.54 4.37 5.10
    ZnS 3.44 直接带隙 0.24 0.55 3.96 4.71
    PE 8.80 直接带隙 >10 >10 –2.45 5.42
    DownLoad: CSV
    Baidu
  • [1]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [2]

    Li Z L, Du B X 2018 IEEE Electr. Insul. Mag. 34 30Google Scholar

    [3]

    杜伯学, 韩晨磊, 李进, 李忠磊 2019 电工技术学报 34 179Google Scholar

    Du B X, Han C L, Li J, Li Z L 2019 Trans. Chin. Electrotech. Soc. 34 179Google Scholar

    [4]

    何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417Google Scholar

    He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417Google Scholar

    [5]

    Mazzanti G, Diban B 2021 IEEE Trans. Power Delivery 36 3784Google Scholar

    [6]

    Lewis T J 2014 IEEE Trans. Dielectr. Electr. Insul. 21 497Google Scholar

    [7]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [8]

    Takada T, Hayase Y, Tanaka Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152Google Scholar

    [9]

    Zhu X, Wu J, Wang Y, Yin Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 450Google Scholar

    [10]

    Li S T, Zhao N, Nie Y J, Wang X, Chen G, Teyssedre G 2015 IEEE Trans. Dielectr. Electr. Insul. 22 92Google Scholar

    [11]

    Ye C, Zhang D S, Chen B, Tung C H, Wu L Z 2023 Chem. Phys. Rev. 4 011304Google Scholar

    [12]

    Han C L, Du B X, Li J, Li Z L, Tanaka T 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1204Google Scholar

    [13]

    Yang M, Wang S, Fu J, Zhu Y, Liang J, Cheng S, Hu S, Hu J, He J, Li Q 2023 Adv. Mater. 35 2301936Google Scholar

    [14]

    Smith A M, Lane L A, Nie S M 2014 Nat. Commun. 5 4506Google Scholar

    [15]

    Tanaka T 2019 IEEE Trans. Dielectr. Electr. Insul. 26 276Google Scholar

    [16]

    Lei Z P, Fabiani D, Bray T, Li C Y, Wang X Y, Andritsch T, Credi A, La Rosa M 2021 IEEE Trans. Dielectr. Electr. Insul. 28 753Google Scholar

    [17]

    Moyassari A, Unge M, Hedenqvist M S, Gedde U W, Nilsson F 2017 J. Chem. Phys. 146 204901Google Scholar

    [18]

    Chen X, Zhao A X, Li J M, Deng J B, Zhang G J, Zhao X F 2019 J. Appl. Phys. 126 035101Google Scholar

    [19]

    Lü Z P, Ma Y T, Zhang C, Peng J Y, Wu K, Dissado L A 2021 IEEE Trans. Dielectr. Electr. Insul. 28 616Google Scholar

    [20]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [21]

    Cheng S, Zhou Y, Li Y, Yuan C, Yang M, Fu J, Hu J, He J, Li Q 2021 Energy Storage Mater. 42 445Google Scholar

    [22]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [23]

    Emtage P R, Tantraporn W 1962 Phys. Rev. Lett. 8 267Google Scholar

    [24]

    Hoang A T, Pallon L, Liu D, Serdyuk Y V, Gubanski S M, Gedde U W 2016 Polymers 8 87Google Scholar

    [25]

    Zhou L, Wang X, Zhang Y, Zhang P, Li Z 2019 Materials 12 2657Google Scholar

    [26]

    Akram S, Bhutta M S, Zhou K, Meng P F, Castellon J, Wang P, Rasool G, Aamir M, Nazir M T 2021 IEEE Trans. Dielectr. Electr. Insul. 28 1514Google Scholar

    [27]

    Fishchuk I I, Kadashchuk A K, Vakhnin A, Korosko Y, Bässler H, Souharce B, Scherf U 2006 Phys. Rev. B 73 115210Google Scholar

    [28]

    Li C, Duan L, Li H, Qiu Y 2014 J. Phys. Chem. C 118 10651Google Scholar

    [29]

    屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁 2012 61 01704Google Scholar

    Tu D M, Wang X, Lv Z P, Wu K, Peng Z R 2012 Acta Phys. Sin. 61 01704Google Scholar

    [30]

    张睿智, 陈文灏, 杨璐娜 2012 61 187201Google Scholar

    Zhang R Z, Chen W H, Yang L N 2012 Acta Phys. Sin. 61 187201Google Scholar

    [31]

    Hewa-Kasakarage N N, Kirsanova M, Nemchinov A, Schmall N, El-Khoury P Z, Tarnovsky A N, Zamkov M 2009 J. Am. Chem. Soc. 131 1320Google Scholar

    [32]

    Chen X H, Chen Y T, Ren F F, Gu S L, Tan H H, Jagadish C, Ye J D 2019 Appl. Phys. Lett. 115 202101Google Scholar

  • [1] Zhao Da-Shuai, Sun Zhi, Sun Xing, Sun Huai-De, Han Bai. Micro gap air discharge based on fractal theory. Acta Physica Sinica, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] Guo Rong- Rong, Lin Jin-Hai, Liu Li-Li, Li Shi-Wei, Wang Chen, Lin Hai-Jun. Effect of deep level defects on space charge distribution in CdZnTe crystals. Acta Physica Sinica, 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [3] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [4] Liang Ming-Hui, Zheng Fei-Hu, An Zhen-Lian, Zhang Ye-Wen. Numerical extraction of electric field distribution from thermal pulse method based on Monte Carlo simulation. Acta Physica Sinica, 2016, 65(7): 077702. doi: 10.7498/aps.65.077702
    [5] Liu Kang-Lin, Liao Rui-Jin, Zhao Xue-Tong. Measurement of space charges in air based on sound pulse method. Acta Physica Sinica, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [6] Xue Zhen-Jie, Li Kui-Ying, Sun Zhen-Ping. Carrier transport characteristics in CdSe/CdS/Thioglycolic acid ligand quantum dots with a core-shell structure. Acta Physica Sinica, 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [7] Li Xia, Feng Dong-Hai, He Hong-Yan, Jia Tian-Qing, Shan Lu-Fan, Sun Zhen-Rong, Xu Zhi-Zhan. Ultrafast carrier dynamics in CdTe/CdS Core/Shell quantum dots. Acta Physica Sinica, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [8] Zuo Ying-Hong, Wang Jian-Guo, Zhu Jin-Hui, Niu Sheng-Li, Fan Ru-Yu. Investigation of the cathode electric field at the initial stage of explosive electron emission. Acta Physica Sinica, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [9] Li Wei-Qin, Zhang Hai-Bo, Lu Jun. Charging effects of SiO2 thin films under defocused electron beam irradiation. Acta Physica Sinica, 2012, 61(2): 027302. doi: 10.7498/aps.61.027302
    [10] Liao Rui-Jin, Wu Fei-Fei, Liu Xing-Hua, Yang Fan, Yang Li-Jun, Zhou Zhi, Zhai Lei. Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air. Acta Physica Sinica, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [11] Liao Rui-Jin, Zhou Tian-Chun, George Chen, Yang Li-Jun. A space charge trapping model and its parameters in polymeric material. Acta Physica Sinica, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [12] Chen Xuan, An Zhen-Lian, Liu Chen-Xia, Zhang Ye-Wen, Zheng Fei-Hu. Influence of surface fluorination temperature on space charge accumulation in polyethylene. Acta Physica Sinica, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [13] An Zhen-Lian, Liu Chen-Xia, Chen Xuan, Zheng Fei-Hu, Zhang Ye-Wen. Space charge in surface fluorinated polyethylene. Acta Physica Sinica, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [14] Tu De-Min, Wang Xia, Lü Ze-Peng, Wu Kai, Peng Zong-Ren. Formation and inhibition mechanisms of space charges in direct current polyethylene insulation explained by energy band theory. Acta Physica Sinica, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [15] Chen Xi, Wang Xia, Wu Kai, Peng Zong-Ren, Cheng Yong-Hong. Effect of temperature gradient on space charge waveform in pulsed electroacoustic method. Acta Physica Sinica, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [16] Zhao Min, An Zhen-Lian, Yao Jun-Lan, Xie Chen, Xia Zhong-Fu. Trap capture properties of space charge and void breakdown charge in a cellular polypropylene electret film. Acta Physica Sinica, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [17] Xiao Chun, Zhang Ye-Wen, Lin Jia-Qi, Zheng Fei-Hu, An Zhen-Lian, Lei Qing-Quan. Research of the recombination rate of space charge in LDPE film during the short-circuit discharge process via the photon counting method. Acta Physica Sinica, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [18] Yang Qiang, An Zhen-Lian, Zheng Fei-Hu, Zhang Ye-Wen. The relationship between energy distribution and space distribution of charge traps in linear low density polyethylene. Acta Physica Sinica, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [19] An Zhen-Lian, Yang Qiang, Zheng Fei-Hu, Zhang Ye-Wen. Space charges formed in the hot compression molding process of low density polyethylene. Acta Physica Sinica, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [20] Zheng Fei-Hu, Zhang Ye-Wen, Wu Chang-Shun, Li Ji-Xiao, Xia Zhong-Fu. Piezo-PWP and PEA methods for measuring space charge in solid dielectric. Acta Physica Sinica, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
Metrics
  • Abstract views:  1661
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2023
  • Accepted Date:  01 April 2024
  • Available Online:  24 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回
Baidu
map