搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非聚焦电子束照射SiO2薄膜带电效应

李维勤 张海波 鲁君

引用本文:
Citation:

非聚焦电子束照射SiO2薄膜带电效应

李维勤, 张海波, 鲁君

Charging effects of SiO2 thin films under defocused electron beam irradiation

Li Wei-Qin, Zhang Hai-Bo, Lu Jun
PDF
导出引用
  • 采用考虑电子散射、俘获、输运和自洽场的三维数值模型, 模拟了低能非聚焦电子束照射接地SiO2薄膜的带电效应. 结果表明, 由于电子的迁移和扩散, 电子会渡越散射区域产生负空间电荷分布. 空间电荷呈现在散射区域内为正, 区域外为负的交替分布特性. 对于薄膜负带电, 电子会输运至导电衬底形成泄漏电流, 其暂态过程随泄漏电流的增加趋于平衡. 而正带电暂态过程随返回二次电子的增多而趋于平衡. 在平衡态时, 负带电表面电位随薄膜厚度、陷阱密度的增大而降低, 随电子迁移率、薄膜介电常数的增大而升高;而正带电表面电位受它们影响较小.
    Based on a three-dimensional self-consistent numerical model with consideration of electron scattering, trapping and transport, the charging effects due to low-energy defocused electron beam irradiation are simulated for a SiO2 thin film with a grounded conductive substrate. The results show that because of electron drift and diffusion, electrons can transit the electron scattering region, forming negative space charges. The space charge is, therefore, positive and negative within and outside the scattering region, respectively. Some electrons can flow to the conductive substrate, forming the leakage current, and the transient negative charging process tends to equilibrium as the leakage current increases. In comparison, the transient positive charging process approaches equilibrium with the number of returned electrons increasing due to the positive surface potential. In the equilibrium state, the surface potential of the film negatively charged decreases with film thickness and trap density increasing; it increases with electron mobility and dielectric constant. However, the equilibrium surface potential of the film positively charged varies slightly with film parameter.
    • 基金项目: 国家自然科学基金(批准号: 60476018), 陕西省教育厅科研计划项目(批准号: 11JK0926)和西安理工大学博士科研启动基金(批准号: 105-211005)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60476018), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 11JK0926), and the Doctor Research Start Fund of Xian University of Technology (Grant No. 105-211005).
    [1]

    Cazaux J 2005 J. Microsc. 217 16

    [2]
    [3]

    Reimer L 1993 Image Formation in Low Voltage Scanning Electron Microscopy (Bellingham: SPIE Optical Engineering Press) p71

    [4]
    [5]

    Abe H, Babin S, Borisov S, Hamaguchi A, Kadowaki M, Miyano Y, Yamazaki Y 2009 J. Vac. Sci. Technol. B 27 1039

    [6]
    [7]

    Zhao S L, Bertrand P 2011 Chin. Phys. B 20 037901

    [8]

    Joo J, Chow B Y, Jacobson J M 2006 Nano Lett 6 2021

    [9]
    [10]

    Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 55 148]

    [11]
    [12]

    Song H Y, Zhang Y L, Wei Q, Kong X D 2005 High Energy Phys. Nucl. Phys. 29 1219 (in Chinese) [宋会英, 张玉林, 魏强, 孔祥东 2005 高能物理与核物理 29 1219]

    [13]
    [14]
    [15]

    Ren L M Chen B Q, Tan Z Y 2002 Acta Phys. Sin. 51 512 (in Chinese) [任黎明, 陈宝钦, 谭震宇 2002 51 512]

    [16]

    Paulmier T, Dirassen B, Payan D, Eesbeek M V 2009 IEEE Trans. Dielectr. Electr. Insul. 16 682

    [17]
    [18]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]

    [19]
    [20]
    [21]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese)[黄建国, 韩建伟 2010 59 2907]

    [22]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [23]
    [24]
    [25]

    Sessler G M 1998 Electrets (New York: Springer-Verlag)

    [26]
    [27]

    Zhang X Q, Sessler G M, Xia Z F, Zhang Y W 2001 Acta Phys. Sin. 50 293 (in Chinese) [张晓青, Sessler G M, 夏钟福, 张冶文 2001 50 293]

    [28]
    [29]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [30]

    Ura K 1998 J. Electron Microsc. 47 143

    [31]
    [32]

    Nakasugi T, Ando A, Sugihara K, Miyoshi M, Okumura K 2001 Proc. SPIE 4343 334

    [33]
    [34]
    [35]

    Koike T, Ikeda T, Miyoshi M, Okumura K, Ura K 2002 Jpn. J. Appl. Phys. 41 915

    [36]
    [37]

    Zhang H B, Feng R J, Ura K 2004 Sci. Prog. 87 249

    [38]
    [39]

    Zhu S Q, Rau E I, Yang F H 2003 Semicond. Sci. Technol. 18 361

    [40]
    [41]

    Cornet N, Goeuriot D, Guerret-Picourt C, Juv D, Trheux D, Touzin M, Fitting H J 2008 J. Appl. Phys. 103 064110

    [42]

    Askri B, Raouadi K, Renoud R, Yangui B 2009 J. Electrostatics 67 695

    [43]
    [44]

    Rau E I, Fakhfakh S, Andrianov M V, Evstafeva E N, Jbara O, Rondot S, Mouze D 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 719

    [45]
    [46]
    [47]

    Mizuhara Y, Kato J, Nagatomi T, Takai Y, Inoue M 2002 J. Appl. Phys. 92 6128

    [48]

    Ohya K, Inai K, Kuwada H, Hayashi T, Saito M 2008 Surf. Coat. Technol. 202 5310

    [49]
    [50]
    [51]

    Bai M, Pease R F W 2004 J. Vac. Sci. Technol. B 22 2907

    [52]
    [53]

    Taylor D M, Mehdi Q H 1979 J. Phys. D 12 2253

    [54]
    [55]

    Li W Q, Zhang H B 2008 Acta Phys. Sin. 57 3219 (in Chinese) [李维勤, 张海波 2008 57 3219]

    [56]

    Li W Q, Zhang H B 2010 Appl. Surf. Sci. 256 3482

    [57]
    [58]
    [59]

    Li W Q, Zhang H B 2010 Micron 41 416

    [60]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443

    [61]
    [62]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 306

    [63]
    [64]
    [65]

    Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487

    [66]
    [67]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press) p27

    [68]

    Ying M H, Thong J T L 1994 Meas. Sci. Technol. 5 1089

    [69]
    [70]

    Cazaux J 2004 J. Appl. Phys. 95 731

    [71]
    [72]

    Zhang H B, Feng R J, Ura K 2003 Chin. Phys. Lett. 20 2011

    [73]
    [74]

    Touzin M, Goeuriot D, Guerret-Picourt C, Juv D, Trheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

    [75]
    [76]
    [77]

    Renoud R, Mady F, Attard C, Bigarr J, Ganachaud J P 2004 Phys. Status Solidi A 201 2119

    [78]

    Ning T H 1976 J. Appl. Phys. 47 3203

    [79]
    [80]
    [81]

    Cazaux J 1996 X-Ray Spectrom. 25 265

    [82]

    Renoud R, Attard C, Ganachaud J-P, Bartholome S, Dubus A 1998 J. Phys.: Condens. Matter 10 5821.

    [83]
    [84]
    [85]

    Bai M Pease R F W Meisburger W D 2003 J. Vac. Sci. Technol. B 21 106

  • [1]

    Cazaux J 2005 J. Microsc. 217 16

    [2]
    [3]

    Reimer L 1993 Image Formation in Low Voltage Scanning Electron Microscopy (Bellingham: SPIE Optical Engineering Press) p71

    [4]
    [5]

    Abe H, Babin S, Borisov S, Hamaguchi A, Kadowaki M, Miyano Y, Yamazaki Y 2009 J. Vac. Sci. Technol. B 27 1039

    [6]
    [7]

    Zhao S L, Bertrand P 2011 Chin. Phys. B 20 037901

    [8]

    Joo J, Chow B Y, Jacobson J M 2006 Nano Lett 6 2021

    [9]
    [10]

    Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 55 148]

    [11]
    [12]

    Song H Y, Zhang Y L, Wei Q, Kong X D 2005 High Energy Phys. Nucl. Phys. 29 1219 (in Chinese) [宋会英, 张玉林, 魏强, 孔祥东 2005 高能物理与核物理 29 1219]

    [13]
    [14]
    [15]

    Ren L M Chen B Q, Tan Z Y 2002 Acta Phys. Sin. 51 512 (in Chinese) [任黎明, 陈宝钦, 谭震宇 2002 51 512]

    [16]

    Paulmier T, Dirassen B, Payan D, Eesbeek M V 2009 IEEE Trans. Dielectr. Electr. Insul. 16 682

    [17]
    [18]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]

    [19]
    [20]
    [21]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese)[黄建国, 韩建伟 2010 59 2907]

    [22]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [23]
    [24]
    [25]

    Sessler G M 1998 Electrets (New York: Springer-Verlag)

    [26]
    [27]

    Zhang X Q, Sessler G M, Xia Z F, Zhang Y W 2001 Acta Phys. Sin. 50 293 (in Chinese) [张晓青, Sessler G M, 夏钟福, 张冶文 2001 50 293]

    [28]
    [29]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [30]

    Ura K 1998 J. Electron Microsc. 47 143

    [31]
    [32]

    Nakasugi T, Ando A, Sugihara K, Miyoshi M, Okumura K 2001 Proc. SPIE 4343 334

    [33]
    [34]
    [35]

    Koike T, Ikeda T, Miyoshi M, Okumura K, Ura K 2002 Jpn. J. Appl. Phys. 41 915

    [36]
    [37]

    Zhang H B, Feng R J, Ura K 2004 Sci. Prog. 87 249

    [38]
    [39]

    Zhu S Q, Rau E I, Yang F H 2003 Semicond. Sci. Technol. 18 361

    [40]
    [41]

    Cornet N, Goeuriot D, Guerret-Picourt C, Juv D, Trheux D, Touzin M, Fitting H J 2008 J. Appl. Phys. 103 064110

    [42]

    Askri B, Raouadi K, Renoud R, Yangui B 2009 J. Electrostatics 67 695

    [43]
    [44]

    Rau E I, Fakhfakh S, Andrianov M V, Evstafeva E N, Jbara O, Rondot S, Mouze D 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 719

    [45]
    [46]
    [47]

    Mizuhara Y, Kato J, Nagatomi T, Takai Y, Inoue M 2002 J. Appl. Phys. 92 6128

    [48]

    Ohya K, Inai K, Kuwada H, Hayashi T, Saito M 2008 Surf. Coat. Technol. 202 5310

    [49]
    [50]
    [51]

    Bai M, Pease R F W 2004 J. Vac. Sci. Technol. B 22 2907

    [52]
    [53]

    Taylor D M, Mehdi Q H 1979 J. Phys. D 12 2253

    [54]
    [55]

    Li W Q, Zhang H B 2008 Acta Phys. Sin. 57 3219 (in Chinese) [李维勤, 张海波 2008 57 3219]

    [56]

    Li W Q, Zhang H B 2010 Appl. Surf. Sci. 256 3482

    [57]
    [58]
    [59]

    Li W Q, Zhang H B 2010 Micron 41 416

    [60]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443

    [61]
    [62]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 306

    [63]
    [64]
    [65]

    Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487

    [66]
    [67]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press) p27

    [68]

    Ying M H, Thong J T L 1994 Meas. Sci. Technol. 5 1089

    [69]
    [70]

    Cazaux J 2004 J. Appl. Phys. 95 731

    [71]
    [72]

    Zhang H B, Feng R J, Ura K 2003 Chin. Phys. Lett. 20 2011

    [73]
    [74]

    Touzin M, Goeuriot D, Guerret-Picourt C, Juv D, Trheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

    [75]
    [76]
    [77]

    Renoud R, Mady F, Attard C, Bigarr J, Ganachaud J P 2004 Phys. Status Solidi A 201 2119

    [78]

    Ning T H 1976 J. Appl. Phys. 47 3203

    [79]
    [80]
    [81]

    Cazaux J 1996 X-Ray Spectrom. 25 265

    [82]

    Renoud R, Attard C, Ganachaud J-P, Bartholome S, Dubus A 1998 J. Phys.: Condens. Matter 10 5821.

    [83]
    [84]
    [85]

    Bai M Pease R F W Meisburger W D 2003 J. Vac. Sci. Technol. B 21 106

  • [1] 王赫宇, 李忠磊, 杜伯学. 界面电子结构对核壳量子点/聚乙烯纳米复合绝缘电导与空间电荷特性的影响.  , 2024, 73(12): 127702. doi: 10.7498/aps.73.20232041
    [2] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电.  , 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [3] 郭榕榕, 林金海, 刘莉莉, 李世韦, 王尘, 林海军. CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响.  , 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [4] 霍志胜, 蒲红斌, 李维勤. 高能透射电子束照射聚合物薄膜的带电效应.  , 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [5] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响.  , 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [6] 刘康淋, 廖瑞金, 赵学童. 声脉冲法空间电荷测量系统的研究.  , 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [7] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究.  , 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [8] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究.  , 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [9] 屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理.  , 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [10] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数.  , 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [11] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响.  , 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [12] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷.  , 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [13] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响.  , 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [14] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性.  , 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [15] 肖春, 张冶文, 林家齐, 郑飞虎, 安振连, 雷清泉. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究.  , 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [16] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系.  , 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [17] 李维勤, 张海波. 低能电子束照射接地绝缘薄膜的负带电过程.  , 2008, 57(5): 3219-3229. doi: 10.7498/aps.57.3219
    [18] 安振连, 杨 强, 郑飞虎, 张冶文. 低密度聚乙烯热压成型过程中的空间电荷.  , 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [19] 王长顺, 潘 煦, Urisu Tsuneo. 同步辐射光激励的二氧化硅薄膜刻蚀研究.  , 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [20] 郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法.  , 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
计量
  • 文章访问数:  7468
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-25
  • 修回日期:  2011-05-12
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map