-
Transport properties of nanoparticles in gases have many practical applications, such as aerosol science, combustion, and micro- and nano-scale fabrication. A nanoparticle moving in a fluid is expected to experience a drag force, which determines the transport property of the particle. According to the Einstein relationship, the diffusion coefficient of a particle is inversely proportional to the drag force coefficient. However, in the transition regime, it is usually difficult to evaluate the drag force of suspended particles. A typical method is to extend the asymptotic solution of the free molecular or continuum limit to the transition regime. According to the gas kinetic theory, Li and Wang proposed a theoretical expression for drag force on nanoparticles in the free molecular regime, which is then extended to the entire range of Knudsen number following a semi-empirical approach [Li Z G, Wang H 2003 Phys. Rev. E 68 061207]. For nanoparticles, it is necessary to verify the theoretical predictions since the gas-particle non-rigid-body interactions must be taken into account. In this work, the drag force on nanoparticle in the transition regime is investigated by using molecular dynamics (MD) simulation. To evaluate the drag force, a harmonic potential is used to the nanoparticle to constrain its Brownian motion in our MD simulation. In the steady state, the drag force can be obtained by the balance between the drag force and harmonic force. It is found that the gas-particle non-rigid-body interaction has a significant influence on the drag force of nanoparticle. For weak gas-solid coupling, the MD simulation results can be in good agreement with the prediction of Li-Wang theory. However, for strong coupling, there exists significant discrepancy between the MD simulation results and the theoretical results. Due to the gas-solid intermolecular interactions, gas molecules can be adsorbed on the nanoparticle surface, and after a time period, they may be re-emitted from the surface when they gain sufficient kinetic energy. Therefore, an adsorption-desorption equilibrium and an adsorption layer can be established on the particle surface. The adsorption layer enlarges the collision cross-sectional area and enhances the momentum transfer between gas molecules and the particle, and thus the drag force increases. This can explain the inconsistencies between the theoretical results and MD simulations. In this work, we introduce an adsorption ratio to evaluate the thickness of the adsorption layer. Then, the effective particle radius can be defined by the sum of particle radius and the thickness of the adsorption layer. By using the effective particle radius, the simulation values are in very good agreement with the theoretical predictions. The results of this work provide insights into the applications of nanoparticles in aerosol science.
-
Keywords:
- nanoparticle /
- transition regime /
- drag force /
- molecular dynamic simulations
[1] Li Z G 2009 Phys. Rev. E 80 061204Google Scholar
[2] Wong R Y M, Liu C R, Wang J, Chao C Y H, Li Z G 2012 J. Nanosci. Nanotechnol. 12 2311Google Scholar
[3] Livi C, Staso G D, Clercx H J H, Toschi F 2022 Phys. Rev. E 105 015306Google Scholar
[4] Qiu J, Qiu T T 2015 Carbon 81 20Google Scholar
[5] Zhang Y Y, Li S Q, Yan W, Yao Q 2012 Powder Technol. 227 24Google Scholar
[6] Breddan M J D, Wirz R E 2023 J. Aerosol Sci. 167 106079Google Scholar
[7] Westmeiera D, Solouk-Saranb D, Vallet C 2018 Proc. Natl. Acad. Sci. 115 7087Google Scholar
[8] Pankhurst Q, Jones S, Dobson J 2016 J. Phys. D: Appl. Phys. 49 501002Google Scholar
[9] Mackus A J M, Weber M J, Thissen N F W, Garcia-Alonso D, Vervuurt R H J, Assali S, Bol A A, Verheijen M A, Kessels W M M 2015 Nanotechnology 27 034001Google Scholar
[10] Linic S, Aslam U, Boerigter C, Morabito M 2015 Nat. Mater. 14 567Google Scholar
[11] Givehchi R, Tan Z 2015 J. Aerosol Sci. 83 12Google Scholar
[12] Liu C R, Li Z G, Wang H 2016 Phys. Rev. E 94 023102Google Scholar
[13] 刘东静, 周福, 陈帅阳, 胡志亮 2023 72 157901Google Scholar
Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72 157901Google Scholar
[14] Wang J, Su J J, Xia G D 2020 Phys. Rev. E 101 013103Google Scholar
[15] Gutiérrez-Varela O, Santamaria R 2021 J. Mol. Liq. 338 116466Google Scholar
[16] 郭瑞雪, 艾保全 2023 72 200501Google Scholar
Guo R X, Ai B Q 2023 Acta Phys. Sin. 72 200501Google Scholar
[17] Liao M J, Wei M T, Xu S X, Ouyang D H, Sheng P 2019 Chin. Phys. B 28 084701Google Scholar
[18] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根 2019 68 240501Google Scholar
Liu C H, Liu T Y, Huang R Z, Gao T F, Shu Y G 2019 Acta Phys. Sin. 68 240501Google Scholar
[19] Epstein P S 1924 Phys. Rev. 23 710Google Scholar
[20] Stokes G G 1851 Proc. Cambridge Philos. Soc. 9 8
[21] Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon Press) p55
[22] Cunningham E 1910 Proc. R. Soc. London, Ser. A 83 357Google Scholar
[23] Allen M D, Raabe O G 1982 J. Aerosol Sci. 13 537Google Scholar
[24] Liu C R, Wang H 2019 Phys. Rev. E 99 042127Google Scholar
[25] Su J J, Wang J, Xia G D 2021 Chin. Phys. B 30 075101Google Scholar
[26] Liu W, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 083316Google Scholar
[27] Luo S, Wang J, Xia G D, Li Z G 2016 J. Fluid Mech. 795 443Google Scholar
[28] Wang J, Yu S, Luo S, Xia G D, Zong L 2018 Phys. Fluids 30 063302Google Scholar
[29] Luo S, Wang J, Yu S, Xia G D, Li Z G 2018 J. Fluid Mech. 846 392Google Scholar
[30] Li Z G, Wang H 2003 Phys. Rev. E 68 061206Google Scholar
[31] Li Z G, Wang H 2003 Phys. Rev. E 68 061207Google Scholar
[32] Zhou X W, Johnson R A, Wadley H N G 2004 Phys. Rev. B 69 144113Google Scholar
[33] Kröger M 2004 Phys. Rep. 390 453Google Scholar
[34] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[35] Galliero G, Volz S 2008 J. Chem. Phys. 128 064505Google Scholar
[36] Liu W, Cui J, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 032004Google Scholar
[37] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚 2021 70 055101Google Scholar
Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101Google Scholar
[38] Tsuji T, Iseki H, Hanasaki I, Kawano S 2016 30th International Symposium on Rarefied Gas Dynamics 1786 110003Google Scholar
[39] Hess B 2002 J. Chem. Phys. 116 209Google Scholar
[40] Gomez A, Rosner D E 1993 Combust. Sci. Technol. 89 335Google Scholar
[41] 马奥杰, 陈颂佳, 李玉秀, 陈颖 2021 70 148201Google Scholar
Ma A J, Chen S J, Li Y X, Chen Y 2021 Acta Phys. Sin. 70 148201Google Scholar
[42] Li Z G, Wang H 2005 Phys. Rev. Lett. 95 014502Google Scholar
[43] Liu C R, Li Z G 2010 Phys. Rev. Lett. 105 174501Google Scholar
[44] Li Z G 2009 Phys. Rev. E 79 026312Google Scholar
-
σ/Å ε/K Ar-Ar 3.405 114 Cu-Cu 2.338 4753 Cu-Ar 2.871 736 -
[1] Li Z G 2009 Phys. Rev. E 80 061204Google Scholar
[2] Wong R Y M, Liu C R, Wang J, Chao C Y H, Li Z G 2012 J. Nanosci. Nanotechnol. 12 2311Google Scholar
[3] Livi C, Staso G D, Clercx H J H, Toschi F 2022 Phys. Rev. E 105 015306Google Scholar
[4] Qiu J, Qiu T T 2015 Carbon 81 20Google Scholar
[5] Zhang Y Y, Li S Q, Yan W, Yao Q 2012 Powder Technol. 227 24Google Scholar
[6] Breddan M J D, Wirz R E 2023 J. Aerosol Sci. 167 106079Google Scholar
[7] Westmeiera D, Solouk-Saranb D, Vallet C 2018 Proc. Natl. Acad. Sci. 115 7087Google Scholar
[8] Pankhurst Q, Jones S, Dobson J 2016 J. Phys. D: Appl. Phys. 49 501002Google Scholar
[9] Mackus A J M, Weber M J, Thissen N F W, Garcia-Alonso D, Vervuurt R H J, Assali S, Bol A A, Verheijen M A, Kessels W M M 2015 Nanotechnology 27 034001Google Scholar
[10] Linic S, Aslam U, Boerigter C, Morabito M 2015 Nat. Mater. 14 567Google Scholar
[11] Givehchi R, Tan Z 2015 J. Aerosol Sci. 83 12Google Scholar
[12] Liu C R, Li Z G, Wang H 2016 Phys. Rev. E 94 023102Google Scholar
[13] 刘东静, 周福, 陈帅阳, 胡志亮 2023 72 157901Google Scholar
Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72 157901Google Scholar
[14] Wang J, Su J J, Xia G D 2020 Phys. Rev. E 101 013103Google Scholar
[15] Gutiérrez-Varela O, Santamaria R 2021 J. Mol. Liq. 338 116466Google Scholar
[16] 郭瑞雪, 艾保全 2023 72 200501Google Scholar
Guo R X, Ai B Q 2023 Acta Phys. Sin. 72 200501Google Scholar
[17] Liao M J, Wei M T, Xu S X, Ouyang D H, Sheng P 2019 Chin. Phys. B 28 084701Google Scholar
[18] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根 2019 68 240501Google Scholar
Liu C H, Liu T Y, Huang R Z, Gao T F, Shu Y G 2019 Acta Phys. Sin. 68 240501Google Scholar
[19] Epstein P S 1924 Phys. Rev. 23 710Google Scholar
[20] Stokes G G 1851 Proc. Cambridge Philos. Soc. 9 8
[21] Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon Press) p55
[22] Cunningham E 1910 Proc. R. Soc. London, Ser. A 83 357Google Scholar
[23] Allen M D, Raabe O G 1982 J. Aerosol Sci. 13 537Google Scholar
[24] Liu C R, Wang H 2019 Phys. Rev. E 99 042127Google Scholar
[25] Su J J, Wang J, Xia G D 2021 Chin. Phys. B 30 075101Google Scholar
[26] Liu W, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 083316Google Scholar
[27] Luo S, Wang J, Xia G D, Li Z G 2016 J. Fluid Mech. 795 443Google Scholar
[28] Wang J, Yu S, Luo S, Xia G D, Zong L 2018 Phys. Fluids 30 063302Google Scholar
[29] Luo S, Wang J, Yu S, Xia G D, Li Z G 2018 J. Fluid Mech. 846 392Google Scholar
[30] Li Z G, Wang H 2003 Phys. Rev. E 68 061206Google Scholar
[31] Li Z G, Wang H 2003 Phys. Rev. E 68 061207Google Scholar
[32] Zhou X W, Johnson R A, Wadley H N G 2004 Phys. Rev. B 69 144113Google Scholar
[33] Kröger M 2004 Phys. Rep. 390 453Google Scholar
[34] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[35] Galliero G, Volz S 2008 J. Chem. Phys. 128 064505Google Scholar
[36] Liu W, Cui J, Wang J, Xia G D, Li Z G 2023 Phys. Fluids 35 032004Google Scholar
[37] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚 2021 70 055101Google Scholar
Cui J, Su J J, Wang J, Xia G D, Li Z G 2021 Acta Phys. Sin. 70 055101Google Scholar
[38] Tsuji T, Iseki H, Hanasaki I, Kawano S 2016 30th International Symposium on Rarefied Gas Dynamics 1786 110003Google Scholar
[39] Hess B 2002 J. Chem. Phys. 116 209Google Scholar
[40] Gomez A, Rosner D E 1993 Combust. Sci. Technol. 89 335Google Scholar
[41] 马奥杰, 陈颂佳, 李玉秀, 陈颖 2021 70 148201Google Scholar
Ma A J, Chen S J, Li Y X, Chen Y 2021 Acta Phys. Sin. 70 148201Google Scholar
[42] Li Z G, Wang H 2005 Phys. Rev. Lett. 95 014502Google Scholar
[43] Liu C R, Li Z G 2010 Phys. Rev. Lett. 105 174501Google Scholar
[44] Li Z G 2009 Phys. Rev. E 79 026312Google Scholar
Catalog
Metrics
- Abstract views: 1763
- PDF Downloads: 83
- Cited By: 0