-
为提高采用二维九速离散速度模型的格子Boltzmann方法(LBM)模拟微尺度流动中非线性现象的精度和效率, 引入Dongari等提出的有效平均分子自由程对黏性进行修正(Dongari N, Zhang Y H, Reese J M 2011 J. Fluids Eng. 133 071101); 并针对以往研究微尺度流动时采用边界处理格式含有离散误差的问题, 采用多松弛系数格子Boltzmann方法结合二阶滑移边界条件, 对微尺度Couette流动和周期性Poiseuille流动进行模拟, 并将速度分布以及质量流量等模拟结果与直接模拟蒙特卡罗方法模拟数据、线性Boltzmann方程的数值解以及现有的LBM模型模拟结果进行对比. 结果表明, 相对于现有的LBM模型, 引入新的修正函数所建立的有效黏性多松弛系数LBM模型有效提高了LBM模拟过渡区的微尺度流动中的非线性现象的能力.
-
关键词:
- 微尺度流动 /
- 过渡区 /
- 多松弛系数格子Boltzmann方法 /
- 有效黏性
With the rapid development of micro-electro-mechanical systems (MEMS), microscale rarefied gas flows have received considerable attention in the past decades. Recently, the lattice Boltzmann method (LBM) emerges as a promising way to study the flow in MEMS for its kinetic nature and distinctive computational features. Various LBM models have been used to simulate the microscale and nanoscale flow, among which the two-dimensional and nine-velocities (D2Q9)-based LBM is most widely accepted due to its extremely simplicity and high efficiency. However, the D2Q9-based LBM encounters great difficulties in the transition regime due to the rarefaction effects on mean free path and gas viscosity. An effective way to improve the capability of the existing LBM model is to incorporate an effective viscosity into the relaxation time, which can improve the accuracy of LBM model while keeping the simplicity and efficiency of LBM. However, the existing D2Q9-based LBM models with effective viscosity cannot give satisfactory predictions of the none-equilibrium phenomenon at moderate or high Knudsen (Kn) number both in accuracy and efficiency. To solve the above problem, in this study, an effective mean free path function proposed by Dongari et al. (Dongari N, Zhang Y H, Reese J M 2011 J. Fluids Eng. 133 071101) via modular dynamics mean is introduced into the D2Q9 multi-relaxation-time lattice Boltzmann model (MRT-LBM) to account for the effect of Knudsen layer in transition flow regime, and the viscosity in the MRT-LBM model is modified correspondingly. The combination of the bounce-back and specular reflection boundary condition is used to deal with the velocity slip, and the relaxation time and the reflection coefficient are properly set to eliminate the numerical artifact on the boundaries as the kinetic boundary condition is used. Micro Couette flow at Kn=0.1-6.77, and periodic Poiseuille flow at Kn=0.1128-2.2568, respectively, are numerically investigated by using the proposed MRT-LBM model, and the numerical results, including the non-dimensional velocity profile and the mass flow rate, are verified by the direct simulation Monte~Carlo (DSMC) data, the linearized Boltzmann solutions and the existing LBM model. The calculation results demonstrate that in transition regime, with the increase of Knudsen number, the dimensionless slip velocity at the wall significantly increases. It is shown that the velocity profiles predicted by the present MRT-LBM model agree well with the DSMC data and linearized Boltzmann solutions up to Kn=4.5 in Couette flow, which is much more accurate than that obtained from the existing LBM model. And the present LBM model gives at least the same order of accuracy in the prediction of velocity profile and mass flow rate as the existing LBM model in periodic Poiseuille flow. What is more, the Knudsen minimum phenomenon of flow in the microchannel is successfully captured at around Kn=1. The results demonstrate that the proposed model can enhance the ability of LBM in capturing the non-equilibrium phenomenon in micro flow in the transition regime both in accuracy and efficiency.-
Keywords:
- micro-scale flow /
- transition regime /
- multi-relaxation-time lattice Boltzmann model /
- effective viscosity
[1] Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381
[2] Lockerby D, Reese J 2008 J. Fluid Mech. 604 235
[3] Agarwal R K, Yun K Y, Balakrishnan R 2001 Phys. Fluids 13 3061
[4] Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439
[5] Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Yoshiyuki K 2012 Chin. Phys. B 21 124703
[6] He Y B, Lin X Y, Dong X L 2013 Acta Phys. Sin. 62 194701 (in Chinese) [何郁波, 林晓艳, 董晓亮 2013 62 194701]
[7] Ren S, Zhang J Z, Zhang Y M, Wei D 2014 Acta Phys. Sin. 63 024702 (in Chinese) [任晟, 张家忠, 张亚苗, 卫丁 2014 63 024702]
[8] Li K, Zhong C W 2015 Chin. Phys. B 24 050501
[9] Succi S 2002 Phys. Rev. Lett. 89 064502
[10] Ansumali S, Iliya V K 2002 Phys. Rev. E 66 026311
[11] Tang G H, Tao W Q, He Y L 2005 Phys. Fluids 17 058101
[12] Guo Z L, Shi B C, Zhao T S, Zheng C G 2007 Phys. Rev. E 76 056704
[13] Guo Z L, Zheng C G, Shi B C 2008 Phys. Rev. E 77 036707
[14] Guo Z L, Zheng C G 2008 Int. J. Comput. Fluid Dyn. 22 465
[15] Shan X, Yuan X F, Chen H 2006 J. Fluid Mech. 550 413
[16] Niu X D, Hyodo S A, Munekata T, Suga K 2007 Phys. Rev. E 76 036711
[17] Ansumali S, Karlin I V, Arcidiacono S, Abbas A, Prasianakis N I 2007 Phys. Rev. Lett. 98 124502
[18] Meng J P, Zhang Y H, Hadjiconstantinou N G, Radtke G A, Shan X 2013 J. Fluid Mech. 718 347
[19] Meng J P, Zhang Y H 2011 J. Comput. Phys. 230 835
[20] Kim S H, Pitsch H, Boyd I D 2008 J. Comput. Phys. 227 8655
[21] Zhang Y H, Gu X J, Barber R W, Emerson D R 2006 Phys. Rev. E 74 046704
[22] Kim S H, Pitsch H, Boyd I D 2008 Phys. Rev. E 77 026704
[23] Tian Z W, Zheng C G, Wang X M 2009 Acta Mech. Sin. 41 828 (in Chinese) [田智威, 郑楚光, 王小明 2009 力学学报 41 828]
[24] Tao S, Wang L, Guo Z L 2014 Acta Phys. Sin. 63 214703 (in Chinese) [陶实, 王亮, 郭照立 2014 63 214703]
[25] Stops D W 1970 J. Phys. D 3 685
[26] Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid. Nanofluid. 10 607
[27] Homayoon A, Meghdadi Isfahani A H, Shirani E, Ashrafizadeha M 2011 Int. Commun. Heat Mass Transfer 38 827
[28] Liou T M, Lin C T 2014 Microfluid. Nanofluid. 16 315
[29] Guo Z L, Zhao T S, Shi Y 2006 J. Appl. Phys. 99 074903
[30] Xu Z M, Guo Z L 2013 Int. Commun. Heat Mass Transfer 14 1058
[31] Luo L S 2011 Phys. Rev. E 84 048301
[32] Dongari N, Zhang Y H, Reese J M 2011 J. Fluids Eng. 133 071101
[33] Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546
[34] Sone Y, Takata S, Ohwada T 1990 Eur. J. Mech. B: Fluids 9 273
[35] Ohwada T, Sone Y, Aoki K 1989 Phys. Fluids 1 1588
[36] Cercignani C, Lampis M, Lorenzani S 2004 Phys. Fluids 16 3426
[37] Hadjiconstantinou N G 2003 Phys. Fluids 15 2352
-
[1] Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381
[2] Lockerby D, Reese J 2008 J. Fluid Mech. 604 235
[3] Agarwal R K, Yun K Y, Balakrishnan R 2001 Phys. Fluids 13 3061
[4] Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439
[5] Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Yoshiyuki K 2012 Chin. Phys. B 21 124703
[6] He Y B, Lin X Y, Dong X L 2013 Acta Phys. Sin. 62 194701 (in Chinese) [何郁波, 林晓艳, 董晓亮 2013 62 194701]
[7] Ren S, Zhang J Z, Zhang Y M, Wei D 2014 Acta Phys. Sin. 63 024702 (in Chinese) [任晟, 张家忠, 张亚苗, 卫丁 2014 63 024702]
[8] Li K, Zhong C W 2015 Chin. Phys. B 24 050501
[9] Succi S 2002 Phys. Rev. Lett. 89 064502
[10] Ansumali S, Iliya V K 2002 Phys. Rev. E 66 026311
[11] Tang G H, Tao W Q, He Y L 2005 Phys. Fluids 17 058101
[12] Guo Z L, Shi B C, Zhao T S, Zheng C G 2007 Phys. Rev. E 76 056704
[13] Guo Z L, Zheng C G, Shi B C 2008 Phys. Rev. E 77 036707
[14] Guo Z L, Zheng C G 2008 Int. J. Comput. Fluid Dyn. 22 465
[15] Shan X, Yuan X F, Chen H 2006 J. Fluid Mech. 550 413
[16] Niu X D, Hyodo S A, Munekata T, Suga K 2007 Phys. Rev. E 76 036711
[17] Ansumali S, Karlin I V, Arcidiacono S, Abbas A, Prasianakis N I 2007 Phys. Rev. Lett. 98 124502
[18] Meng J P, Zhang Y H, Hadjiconstantinou N G, Radtke G A, Shan X 2013 J. Fluid Mech. 718 347
[19] Meng J P, Zhang Y H 2011 J. Comput. Phys. 230 835
[20] Kim S H, Pitsch H, Boyd I D 2008 J. Comput. Phys. 227 8655
[21] Zhang Y H, Gu X J, Barber R W, Emerson D R 2006 Phys. Rev. E 74 046704
[22] Kim S H, Pitsch H, Boyd I D 2008 Phys. Rev. E 77 026704
[23] Tian Z W, Zheng C G, Wang X M 2009 Acta Mech. Sin. 41 828 (in Chinese) [田智威, 郑楚光, 王小明 2009 力学学报 41 828]
[24] Tao S, Wang L, Guo Z L 2014 Acta Phys. Sin. 63 214703 (in Chinese) [陶实, 王亮, 郭照立 2014 63 214703]
[25] Stops D W 1970 J. Phys. D 3 685
[26] Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid. Nanofluid. 10 607
[27] Homayoon A, Meghdadi Isfahani A H, Shirani E, Ashrafizadeha M 2011 Int. Commun. Heat Mass Transfer 38 827
[28] Liou T M, Lin C T 2014 Microfluid. Nanofluid. 16 315
[29] Guo Z L, Zhao T S, Shi Y 2006 J. Appl. Phys. 99 074903
[30] Xu Z M, Guo Z L 2013 Int. Commun. Heat Mass Transfer 14 1058
[31] Luo L S 2011 Phys. Rev. E 84 048301
[32] Dongari N, Zhang Y H, Reese J M 2011 J. Fluids Eng. 133 071101
[33] Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546
[34] Sone Y, Takata S, Ohwada T 1990 Eur. J. Mech. B: Fluids 9 273
[35] Ohwada T, Sone Y, Aoki K 1989 Phys. Fluids 1 1588
[36] Cercignani C, Lampis M, Lorenzani S 2004 Phys. Fluids 16 3426
[37] Hadjiconstantinou N G 2003 Phys. Fluids 15 2352
计量
- 文章访问数: 7089
- PDF下载量: 276
- 被引次数: 0