-
The equation of state (EoS) of nuclear matter is a description of the macroscopic properties of nuclear matter under different thermodynamic conditions or external fields, which is critical for understanding theory of the strong interaction—Quantum Chromodynamics (QCD), the nature of nuclei, the dynamics of heavy-ion collisions (HICs), the internal structure of compact stars, the merger of binary neutron stars, and other physical phenomena. Heavy-ion collisions (HICs) are the only method in laboratories to create nuclear matter with extreme conditions such as high temperatures and high densities. HICs at different energy levels offer the possibility to quantitatively study the properties of nuclear matter under diverse thermodynamic conditions. % This paper mainly presents the current research status of the EoS of nuclear matter and introduces the fundamental observables in HICs that are sensitive to the EoS, as well as the typical experiments and results used to explore the EoS. The progress in studying the EoS containing strangeness is also described and its possible research directions in the future also discussed. The status and progress of world-wide heavy-ion accelerators and experimental spectrometers in high-baryon density region are introduced, including China’s large-scale scientific facilities, i.e HIRFL-CSR and HIAF, as well as the CEE experiment. Additionally, the opportunities and challenges for experimental research on the EoS of nuclear matter in China are discussed.
-
Keywords:
- Equation of State (EoS) /
- Heavy-ion Collisions /
- HIRFL-CSR /
- HIAF
-
图 3 地面重离子碰撞实验和天文观测提取到$ E_\text{sym}(\rho_0) $(上)和$ L_\text{sym}(\rho_0) $(下)的结果. (a)和(b)均取自[24]
Figure 3. $ E_\text{sym}(\rho_0) $ (upper panel) and $ L_\text{sym}(\rho_0) $ (lower panel) extracted from terrestrial heavy-ion experiments and astrophysical observations respectively. Panel (a) and Panel (b) both are taken from[24].
图 10 KaoS实验测量$ K^+ $介子在Au+Au和Cu+Cu碰撞中产额比随碰撞能量的变化, 来自输运模型IQMD和RQMD的硬EoS和软EoS分别用短线和点线表示. 图片取得自[50]
Figure 10. Yield ratio of $ K^+ $ in Au+Au and Cu+Cu collisions as a function of collision energy measured by the KaoS experiment. The hard and soft EoS from the transport models IQMD and RQMD are represented by dashed and dotted lines, respectively. Figure taken from[50].
图 11 FOPI实验测量0.4、1.0和1.5 GeV/u的Au+Au碰撞中质子和氘核的椭圆流随快度依赖, 基于IQMD模型硬EoS和软EoS理论计算结果分别用虚线和实线表示. 图片取得自[56]
Figure 11. Elliptic flow of proton and deuteron as a function of rapidity in Au+Au collisions at 0.4, 1.0, and 1.5 GeV/u mesured by the FOPI experiment, red dashed line and black line represent the IQMD predictions with hard EoS and soft EoS respectively. Figure taken from[56].
图 13 (左)30 MeV/u的Ar+Au反应中, 轻带电粒子的约化中子 丰度随实验室角度的变化关系, 曲线为理论模型计算结果; (右)轻核约化中子丰度小角度区的下降斜率(红色区域)与理论计算(空心圆圈)的比较. 图片取自[58]
Figure 13. (Left) In 30 meV/u Ar+Au reactions, $ Y_{n, ex}/Y_{p, CL} $ as a function of polar angle, curves are theoretical calculations. (Right) Comparison the slope of $ Y_{n, ex}/Y_{p, CL} $ in $ \theta_{lab}<100^{\circ} $ from experiment (red band) and theoretical predictions (open circles). Figure taken from[58]
图 15 不同的实验和理论给出的对称能参数$ L_\text{sym}-J_\text{sym} $的限制, 黑色空心圈为PREX-II测量结果, 红色实线和虚线表示其它实验中提取的$ L_\text{sym} = 58.9\pm16 $ MeV的中心值和误差. 图片更新自[63]
Figure 15. Constraints on symmetry energy parameters $ L_\text{sym}-J_\text{sym} $, open circle presents the results of PREX-II experiment, solid and dashed horizontal lines represent the central value and error of $ L_\text{sym} = 58.9\pm16 $ MeV respectively. Figure was taken and updated from[63].
图 18 400 MeV/u的Au+Au半中心碰撞(b<7.5 fm)中ASY-EOS实验测量到的中子和带电粒子椭圆流的比值$ v_2^n/v_2^{ch} $和横动量的关联(黑色方框), 三角和圆分别代表UrQMD在硬($ \gamma = 1.5 $)和软($ \gamma = 0.5 $)对称能时计算结果, 实线是对理论计算结果做线性延拓, 得到与实验数据最佳符合时$ \gamma = 0.75\pm0.1 $, 图片取自[68]
Figure 18. Elliptic flow ratio of neutron and charged particle as a function of transverse momentum, in semi-central Au+Au collisions (b<7.5 fm) at 400 MeV/u measured by ASY-EoS experiment. Triangles and squares are UrQMD predictions with hard ($ \gamma = 1.5 $) and soft ($ \gamma = 0.5 $) symmetry energy, solid line is the linear interpolation of predictions which can describe the data best, correspond to $ \gamma = 0.75\pm0.1 $. Figure taken from[68]
图 19 FOPI实验测量400 MeV/u的核核中心碰撞中$ \pi^-/\pi^+ $产额比与碰撞系统N/Z的依赖(空心菱形)和IBUU04模型在x = 1.0(软EoS)、0.5(中等EoS)和0.(硬EoS)模拟结果比较, 图片取自[72]
Figure 19. $ \pi^-/\pi^+ $ yield ratio measured the FOPI experiment in central nucleus-nucleus collisions at 400 MeV/u as a function of N/Z ratio of the colliding systems (open diamonds), and compared simulation results from the IBUU04 model for x = 1.0 (soft EoS), 0.5 (medium EoS), and 0 (hard EoS). Figure taken from[72]
图 20 HADES实验(方框)、FOPI实验(圆点)、Stream chamber(三角)和E895(五角星)测量到的约化π多重数与$ <\text{A}_\text{part}> $的关系. 图片取自[81]
Figure 20. π multiplicity measured by HADES(squares), FOPI(filled circles), Stream chamber (triangles) and E895 experiment (star) as a function of $ <\text{A}_\text{part}> $. Figure taken from[81]
图 23 (左)SπRIT实验测量270 MeV/u时, 不同Sn+Sn碰撞系统$ \pi^-/\pi^+ $产额比; (右)系统132Sn+124Sn和108Sn+112Sn系统双$ \pi^-/\pi^+ $产额比; 7个输运模型计算结果用不同颜色标记. 图片取自[88]
Figure 23. (Left) $ \pi^-/\pi^+ $ yield ratio measured by the SπRIT experiment in Sn+Sn collisions with different N/Z ratio; (Right) Double $ \pi^-/\pi^+ $ yield ratio in 132Sn+124Sn and 108Sn+112Sn, results from 7 transport models are marked by bands with different color. Figure taken from[88]
图 24 中子星质量(M)和半径(R)的关系, 其中绿区域为核物质, 红色区域代表在核物质基础上再加入$ {\Lambda}N $相互作用后中子星M-R关系, 其中考虑了两种都可以描述超核数据的YNN相互作用. 图片取自[96]
Figure 24. The relationship between the mass (M) and radius (R) of a neutron star, where the green region represents pure nuclear matter, and the red region shows the M-R relationship of neutron stars after incorporating ΛN interactions on top of the nuclear matter, considering two types of YNN interactions that can both describe hyper-nuclear data. Figure taken from[96]
表 1 世界上重离子加速器与其典型实验, 基于文献[108]数据扩充
Table 1. Heavy-ion accelerator in the world and its typical Experiments, expanded based on data listed in[108]
Facility $ \sqrt{s_{NN}} $ (GeV) Period Experiments Bevalac 2.0-2.7 1975-1993 EOS/et al. SIS18 2.4-2.7 1990-now FOPI/Hades/et al. FRIB 1.9-2.1 >2025 AT-TPC$ ^* $ RIBF 1.9-2.1 1986-now SπRIT RAON 1.9-2.0 >2030 LAMPS HIRFL 2.0-2.4 2008-now CEE/ETE Nuclotron 2.0-3.5 2000-now BM@N JPARC-HI 2.0-6.2 >2030 DHS SIS100 2.7-5.0 >2029 CBM/Hades NICA 2.7-11.0 >2025 BM@N/MPD RHIC 3.0-200 2000-2025 STAR SPS 4.5-17.3 1981-now NA49/NA61/SHINE AGS 2.7-4.8 2022-now E895/et al. HIAF 2.2-3.5 >2027 CEE+/CHNS LHC 2760 2018-now ALICE LHC 72 >2027 LHCb/ALICE-FT -
[1] Wilson K G 1974 Phys. Rev. D 102445
[2] Ishii N, Aoki S, Hatsuda T 2007 Phys. Rev. Lett. 99022001
[3] Inoue T 2021 Few Body Syst. 62106
[4] Nemura H 2011 Few Body Syst. 50105
[5] Pásztor A 2024 EPJ Web Conf. 29601009
[6] Weinberg S 1979 Physica A 96327
[7] Weinberg S 1991 Nucl. Phys. B 3633
[8] Drischler C, Holt J W, Wellenhofer C 2021 Ann. Rev. Nucl. Part. Sci. 71403
[9] Machleidt R, Sammarruca F 2016 Phys. Scripta 91083007
[10] Drischler C, Hebeler K, Schwenk A 2016 Phys. Rev. C 93054314
[11] Lee D 2009 Prog. Part. Nucl. Phys. 63117
[12] Elhatisari S, Bovermann L, Ma Y, et al 2024 Nature 63059
[13] MA Y Z, Lv B N, Li N, Wang Q 2024 Nucl. Phys. Rev. 41172(马远卓,吕炳楠,李宁,王倩2024原子核物理评论41172)
[14] Luo X, Shi S, Xu N, Zhang Y 2020 Particles 3278
[15] Borsanyi S, Fodor Z, Guenther J N, Kara R, Katz S D, Parotto P, Pasztor A, Ratti C, Szabo K K 2020 Phys. Rev. Lett. 125052001
[16] Andronic A, Braun-Munzinger P, Redlich K, Stachel J 2018 Nature 561321
[17] McLerran L, Pisarski R D 2007 Nucl. Phys. A 79683
[18] Weber F 2001 J. Phys. G 27465
[19] Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J 2010 Nature 4671081
[20] Romani R W, Kandel D, Filippenko A V, Brink T G, Zheng W 2022 Astrophys. J. Lett. 934 L17
[21] Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Harding A K, Ho W C G, Lattimer J M, Ludlam R M, Mahmoodifar S, Morsink S M, Ray P S, Strohmayer T E, Wood K S, Enoto T, Foster R, Okajima T, Prigozhin G, Soong Y 2019 Astrophys. J. Lett. 887 L24
[22] Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Ho W C G, Lattimer J M, Loewenstein M, Morsink S M, Ray P S, Wolff M T, Baker C L, Cazeau T, Manthripragada S, Markwardt C B, Okajima T, Pollard S, Cognard I, Cromartie H T, Fonseca E, Guillemot L, Kerr M, Parthasarathy A, Pennucci T T, Ransom S, Stairs I 2021 Astrophys. J. Lett.918 L28
[23] LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2017 Phys. Rev. Lett. 119161101
[24] Li B A, Krastev P G, Wen D H, Zhang N B 2019 Eur. Phys. J. A 55117
[25] LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2018 Phys. Rev. Lett. 121161101
[26] Alvarez-Castillo D E, Blaschke D B, Grunfeld A G, Pagura V P 2019 Phys. Rev. D 99063010
[27] Li B A, Cai B J, Xie W J, Zhang N B 2021 Universe 7182
[28] HADES Collaboration, Adamczewski-Musch J, et al. 2019 Nature Phys. 151040
[29] Fuchs C, Wolter H H 2006 Eur. Phys. J. A 305
[30] Garg U, Colò G 2018 Prog. Part. Nucl. Phys. 10155
[31] Margueron J, Hoffmann Casali R, Gulminelli F 2018 Phys. Rev. C 97025805
[32] Li B A, Cai B J, Chen L W, Xie W J, Xu J, Zhang N B 2022 Nuovo Cim. C 4554
[33] Bleicher M, Zabrodin E, Spieles C, Bass S, Ernst C, Soff S, Bravina L, Belkacem M, Weber H, Stöcker H, Greiner W 1999 J. Phys. G 251859
[34] Sorensen A, Agarwal K, Brown K W, Chajęcki Z, Danielewicz P, Drischler C, Gandolfi S, Holt J W, Kaminski M, Ko C M, Kumar R, Li B A, Lynch W G, McIntosh A B, Newton W G, Pratt S, Savchuk O, Stefaniak M, Tews I, Tsang M B, Vogt R, Wolter H, Zbroszczyk H, Abbasi N, Aichelin J, Andronic A, Bass S A, Becattini F, Blaschke D, Bleicher M, Blume C, Bratkovskaya E, Brown B A, Brown D A, Camaiani A, Casini G, Chatziioannou K, Chbihi A, Colonna M, Cozma M D, Dexheimer V, Dong X, Dore T, Du L, Dueñas J A, Elfner H, Florkowski W, Fujimoto Y, Furnstahl R J, Gade A, Galatyuk T, Gale C, Geurts F, Gramegna F, Grozdanov S, Hagel K, Harris S P, Haxton W, Heinz U, Heller M P, Hen O, Hergert H, Herrmann N, Huang H Z, Huang X G, Ikeno N, Inghirami G, Jankowski J, Jia J, Jiménez J C, Kapusta J, Kardan B, Karpenko I, Keane D, Kharzeev D, Kugler A, Le Fèvre A, Lee D, Liu H, Lisa M A, Llope W J, Lombardo I, Lorenz M, Marchi T, McLerran L, Mosel U, Motornenko A, Müller B, Napolitani P, Natowitz J B, Nazarewicz W, Noronha J, Noronha-Hostler J, Odyniec G, Papakonstantinou P, Paulínyová Z, Piekarewicz J, Pisarski R D, Plumberg C, Prakash M, Randrup J, Ratti C, Rau P, Reddy S, Schmidt H R, Russotto P, Ryblewski R, Schäfer A, Schenke B, Sen S, Senger P, Seto R, Shen C, Sherrill B, Singh M, Skokov V, Spaliński M, Steinheimer J, Stephanov M, Stroth J, Sturm C, Sun K J, Tang A, Torrieri G,Trautmann W, Verde G, Vovchenko V, Wada R, Wang F, Wang G, Werner K, Xu N, Xu Z, Yee H U, Yennello S, Yin Y 2024 Prog. Part. Nucl. Phys. 134104080
[35] Voloshin S, Zhang Y 1996 Z. Phys. C 70665
[36] HADES Collaboration, Adamczewski-Musch J, et al. 2023 Eur. Phys. J. A 5980
[37] ALICE Collaboration, Aamodt K, et al. 2010 Phys. Rev. Lett. 105252302
[38] Herrmann N, Wessels J P, Wienold T 1999 Ann. Rev. Nucl. Part. Sci. 49581
[39] Danielewicz P, Lacey R, Lynch W G 2002 Science 2981592
[40] Herrmann N 2022 EPJ Web Conf. 25909001
[41] MPD Collaboration, Abgaryan V, et al. 2022 Eur. Phys. J. A 58140
[42] Guo D, He X, Li P, Qin Z, Hu C, Wang B, Zhou Y, Zheng K, Zhang Y, Wei X, Yang H, Hu D, Shao M, Duan L, Yu Y, Sun Z, Wang Y, Li Q, Xiao Z 2024 Eur. Phys. J. A 6036
[43] Brown B A, Gade A, Stroberg S R, Escher J, Fossez K, Giuliani P, Hoffman C R, Nazarewicz W, Seng C Y, Sorensen A, Vassh N, Bazin D, Brown K W, Capri M A, Crawford H, Danielewic P, Drischler C, Garcia Ruiz R F, Godbey K, Grzywacz R, Hlophe L, Holt J W, Iwasaki H, Lee D, Lenzi S M, Liddick S, Lubna R, Macchiavelli A O, Martinez Pinedo G, McCoy A, Mercenne A, Minamisono K, Monteagudo B, Navratil P, Ringle R, Sargsyan G, Schatz H, Spieker M C, Volya A, Zegers R G, Zelevinsky V, Zhang X 2024
[44] SπRIT Collaboration Shane R, et al. 2015 Nucl. Instrum. Meth. A 784513
[45] Hong B, Ahn D, Ahn J, Bae J, Bae Y, Bok J, Choi S, Do S, Heo C, Huh J, Hwang J, Jang Y, Kang B, Kim A, Kim B, Kim C, Kim E J, Kim G, Kim G, Kim H, Kim J, Kim J, Kim S, Kim Y, Kim Y, Kim Y, Kim Y, Kweon M, Lee C, Lee H, Lee H, Lee H, Lee J, Lee J, Lee J W, Lee J, Lee S, Lee S, Lim S, Moon D, Nam S, Park J, Park J, Seo J, Yang H 2023 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 541260
[46] STAR Collaboration, Abdallah M S, et al. 2022 Phys. Lett. B 827137003
[47] Li B A 2002 Phys. Rev. Lett. 88192701
[48] Chen L W, Ko C M, Li B A 2003 Nucl. Phys. A 729809
[49] Yong G C, Li B A, Xiao Z G, Lin Z W 2022 Phys. Rev. C 106024902
[50] Hartnack C, Oeschler H, Leifels Y, Bratkovskaya E L, Aichelin J 2012 Phys. Rept. 510119
[51] Gustafsson H A, Gutbrod H H, Kolb B, Löhner H, Ludewigt B, Poskanzer A M, Renner T, Riedesel H, Ritter H G, Warwick A, Weik F, Wieman H 1984 Phys. Rev. Lett. 521590
[52] EOS Colllaboration, Partlan M D, et al. 1995 Phys. Rev. Lett. 752100
[53] E895 Collaboration, Liu H, et al. 2000 Phys. Rev. Lett. 845488
[54] E877 Collaboration, Barrette J, et al. 1997 Phys. Rev. C 563254
[55] FOPI Collaboration, Gobbi A, et al. 1993 Nucl. Instrum. Meth. A 324156
[56] FOPI Collaboration, Reisdorf W, et al. 2012 Nucl. Phys. A 8761
[57] Xu H, Tsang M, Liu T, Liu X, Lynch W, Tan W, Verde G, VanderMolen A, Wagnera A, Xib H, Gelbke C, Beaulieu L, Davin B, Larochellec Y, Lefort T, de Souza R, Yanez R, Viola V, Charity R, Sobotka L 2000 Phys. Rev. Lett. 85716
[58] Zhang Y, Tian J, Cheng W, Guan F, Huang Y, Li H, Lü L, Wang R, Wang Y, Wu Q, Yi H, Zhang Z, Zhao Y, Duan L, Hu R, Huang M, Jin G, Jin S, Lu C, Ma J, Ma P, Wang J, Yang H, Yang Y, Zhang J, Zhang Y, Zhang Y, Ma C, Qiao C, Tsang M B, Xiao Z 2017 Phys. Rev. C 95041602
[59] Roca-Maza X, Centelles M, Vinas X, Warda M 2011 Phys. Rev. Lett. 106252501
[60] Zhang W 2023 Phd thesis, Stony Brook University
[61] Donnelly T W, Dubach J, Sick I 1989 Nucl. Phys. A 503589
[62] PREX Collaboration, Adhikari D, et al. 2021 Phys. Rev. Lett. 126172502
[63] Reed B T, Fattoyev F J, Horowitz C J, Piekarewicz J 2021 Phys. Rev. Lett. 126172503
[64] FOPI Collaboration Y Leifels, et al. 1993 Phys. Rev. Lett. 71963
[65] LAND Collaboration, Blaich T, et al. 1992 Nucl. Instrum. Meth. A 314136
[66] Russotto P, Wu P, Zoric M, Chartier M, Leifels Y, Lemmon R, Li Q, Lukasik J, Pagano A, Pawlowski P, Trautmann W 2011 Phys. Lett. B 697471
[67] Cozma M D, Leifels Y, Trautmann W, Li Q, Russotto P 2013 Phys. Rev. C 88044912
[68] Russotto P, Gannon S, Kupny S, Lasko P, Acosta L, Adamczyk M, Al-Ajlan A, Al-Garawi M, Al-Homaidhi S, Amorini F, Auditore L, Aumann T, Ayyad Y, Basrak Z, Benlliure J, Boisjoli M, Boretzky K, Brzychczyk J, Budzanowski A, Caesar C, Cardella G, Cammarata P, Chajecki Z, Chartier M, Chbihi A, Colonna M, Cozma M D, Czech B, De Filippo E, Di Toro M, Famiano M, Gašparić I, Grassi L, Guazzoni C, Guazzoni P, Heil M, Heilborn L, Introzzi R, Isobe T, Kezzar K, Kiš M, Krasznahorkay A, Kurz N, La Guidara E, Lanzalone G, Le Fèvre A, Leifels Y, Lemmon R C, Li Q F, Lombardo I, Lukasik J, Lynch W G, Marini P, Matthews Z, May L, Minniti T, Mostazo M, Pagano A, Pagano E V, Papa M, Pawlowski P, Pirrone S, Politi G, Porto F, Reviol W, Riccio F, Rizzo F, Rosato E, Rossi D, Santoro S, Sarantites D G, Simon H, Skwirczynska I, Sosin Z, Stuhl L, Trautmann W, Trifirò A, Trimarchi M, Tsang M B, Verde G, Veselsky M, Vigilante M, Wang Y, Wieloch A, Wigg P, Winkelbauer J, Wolter H H, Wu P, Yennello S, Zambon P, Zetta L, Zoric M 2016 Phys. Rev. C 94034608
[69] Gaitanos T, Di Toro M, Typel S, Baran V, Fuchs C, Greco V, Wolter H H 2004 Nucl. Phys. A 73224
[70] Li Q, Li Z, Soff S, Bleicher M, Stoecker H 2005 Phys. Rev. C 72034613
[71] FOPI Collaboration, Reisdorf W, et al. 2007 Nucl. Phys. A 781459
[72] Xiao Z, Li B A, Chen L W, Yong G C, Zhang M 2009 Phys. Rev. Lett. 102062502
[73] Feng Z Q, Jin G M 2010 Phys. Lett. B 683140
[74] Xie W J, Su J, Zhu L, Zhang F S 2013 Phys. Lett. B 7181510
[75] Xu J, Chen L W, Tsang M B, Wolter H, Zhang Y X, Aichelin J, Colonna M, Cozma D, Danielewicz P, Feng Z Q, Le Fevre A, Gaitanos T, Hartnack C, Kim K, Kim Y, Ko C M, Li B A, Li Q F, Li Z X, Napolitani P, Ono A, Papa M, Song T, Su J, Tian J L, Wang N, Wang Y J, Weil J, Xie W J, Zhang F S, Zhang G Q 2016 Phys. Rev. C 93044609
[76] Xu J, Wolter H, Colonna M, Cozma M D, Danielewicz P, Ko C M, Ono A, Tsang M B, Zhang Y X, Cheng H G, Ikeno N, Kumar R, Su J, Zheng H, Zhang Z, Chen L W, Feng Z Q, Hartnack C, Le Fèvre A, Li B A, Nara Y, Ohnishi A, Zhang F S 2024 Phys. Rev. C 109044609
[77] E-0895 Collaboration, Klay J L, et al. 2003 Phys. Rev. C 68054905
[78] Wolf A, Appenheimer M, Averbeck R, Charbonnier Y, Diaz J, Doppenschmidt A, Hejny V, Hlavac S, Holzmann R, Kugler A, Lohner H, Marin A, Metag V, Novotny R, Ostendorf R, Pleskac R, Schubert A, Schutz Y, Simon R, Stratmann R, Stroher H, Tlusty P, Vogt P, Wagner V, Weiss J, Wilschut H, Wissmann F, Wolf M 1998 Phys. Rev. Lett. 805281
[79] Wagner A, Muntz C, Oeschler H, Sturm C T, Barth R, Cieslak M, Debowski M, Grosse E, Koczon P, Mang M, Miskowiec D, Schicker R, Schwab E, Senger P, Beckerle P, Brill D, Shin Y, Strobele H, Walus W, Kohlmeyer B, Puhlhofer F, Speer J, Volkel K 1998 Phys. Lett. B 42020
[80] HADES Collaboration, Agakishiev G, et al. 2009 Eur. Phys. J. A 41243
[81] HADES Collaboration, Adamczewski-Musch J, et al. 2020 Eur. Phys. J. A 56259
[82] Kubo T, Ishihara M, Inabe N, Kumagai H, Tanihata I, Yoshida K, Nakamura T, Okuno H, Shimoura S, Asahi K 1992 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 70309
[83] Motobayashi T 2010 Nucl. Phys. A 834707c
[84] Kurata-Nishimura M 2017 PoS INPC2016218
[85] Barney J, Estee J, Lynch W, Isobe T, Jhang G, Kurata-Nishimura M, McIntosh A, Murakami T, Shane R, Tangwancharoen S, Tsang M, Cerizza G, Kaneko M, Lee J, Tsang C, Wang R, Anderson C, Baba H, Chajecki Z, Famiano M, Hodges-Showalter R, Hong B, Kobayashi T, Lasko P, Łukasik J, Nakatsuka N, Olsen R, Otsu H, Pawłowski P, Pelczar K, Powell W, Sakurai H, Santamaria C, Setiawan H, Taketani A, Winkelbauer J, Xiao Z, Yennello S, Yurkon J, Zhang Y 2021 Rev. Sci. Instrum. 92063302
[86] Lasko P, Adamczyk M, Brzychczyk J, Hirnyk P, Łukasik J, Pawłowski P, Pelczar K, Snoch A, Sochocka A, Sosin Z, Barney J, Cerizza G, Estee J, Isobe T, Jhang G, Kaneko M, Kurata-Nishimura M, Lynch W, Murakami T, Santamaria C, Tsang M, Zhang Y 2017 Nucl. Instrum. Meth. A 85692
[87] Barney J E 2019 Phd thesis, Michigan State University
[88] SπRIT & TEMP Collaboration, Jhang G, et al. 2021 Phys. Lett. B 813136016
[89] Yong G C 2021 Phys. Rev. C 104014613
[90] Glendenning N K 1982 Phys. Lett. B 114392
[91] Millener D J, Dover C B, Gal A 1988 Phys. Rev. C 382700
[92] Gal A, Hungerford E V, Millener D J 2016 Rev. Mod. Phys. 88035004
[93] Schaffner J, Mishustin I N 1996 Phys. Rev. C 531416
[94] Schaffner-Bielich J 2010 Nucl. Phys. A 835279
[95] Yong G C 2023 Phys. Rev. D 108 L091507
[96] Lonardoni D, Lovato A, Gandolfi S, Pederiva F 2015 Phys. Rev. Lett. 114092301
[97] Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 3406131
[98] Bombaci I 2017 JPS Conf. Proc. 17101002
[99] Gerstung D, Kaiser N, Weise W 2020 Eur. Phys. J. A 56175
[100] Feng Z Q 2021 Eur. Phys. J. A 5718
[101] Ji Y 2024 EPJ Web Conf. 29602004
[102] STAR Collaboration, Aboona B, et al. 2023 Phys. Rev. Lett. 130212301
[103] Oliinychenko D, Shen C, Koch V 2021 Phys. Rev. C 103034913
[104] Neidig T, Gallmeister K, Greiner C, Bleicher M, Vovchenko V 2022 Phys. Lett. B 827136891
[105] Sun K J, Wang R, Ko C M, Ma Y G, Shen C 2024 Nature Commun. 151074
[106] Coci G, Gläßel S, Kireyeu V, Aichelin J, Blume C, Bratkovskaya E, Kolesnikov V, Voronyuk V 2023 Phys. Rev. C 108014902
[107] Bruce R, Alemany Fernandez R, Argyropoulos T, Bartosik H, Bracco C, Cai R, D’ Andrea M, Frasca A, Hermes P, Jowett J, Mirarchi D, Redaelli S, Solfaroli M, Triantafyllou N, Wenninger J 2023 JACoW IPAC2023 MOPL021
[108] Galatyuk T 2019 Nucl. Phys. A 982163
[109] Fu W j, Pawlowski J M, Rennecke F 2020 Phys. Rev. D 101054032
[110] Gunkel P J, Fischer C S 2021 Phys. Rev. D 104054022
[111] Hippert M, Grefa J, Manning T A, Noronha J, Noronha-Hostler J, Portillo Vazquez I, Ratti C, Rougemont R, Trujillo M 2023
[112] Basar G 2024 Phys. Rev. C 110015203
[113] Odyniec G 2019 PoS CORFU2018151
[114] Spiller P, Balss R, Bartolome P, Blaurock J, Blell U, Boine-Frankenheim O, Bozyk L, Chorowski M, Eisel T, Frey M, Giacomini T, Kaether F, Khodzhibagiyan H, Klammes S, Klingbeil H, Koenig H, Kornilov V, Kowina P, Lens D, Meier J, Ondreka D, Petzenhauser I, Plyusnin V, Pongrac I, Pyka N, Raginel V, Rottlaender P, Roux C, Schmidt J, Schwickert M, Sugita K, Szwangruber A, Szwangruber P, Trockel R, Waldt A, Welker H, Wilfert S, Winkler T, Winters D 2020 JINST 15 T12013
[115] Friman B, et al 2011 Lect. Notes Phys. 814
[116] Kapishin M 2019 Nucl. Phys. A 982967
[117] Sissakian A N, Kekelidze V D, Sorin A S 2009 Nucl. Phys. A 827630C
[118] Ahn J K, Bak S I, Blumenfeld Y, Chai J S, Cheon B G, Cheoun M K, Cho D, Cho Y S, Choi B H,Choi C I, Choi E M, Choi H J, Choi M S, Choi S, Choi T K, Choi Y S, Chung K H, Ha E J, Ha J H, Hahn I S, Han J M, Han J M, Hong B, Hong S W, Hong W, Hwang S H, Hyun C H, Jang D Y, Jang J, Jeon D O, Jeong D, Jeong S C, Jhang G, Joo E, Kadi Y, Kang B H, Kang H S, Kim A, Kim D Y, Kim D L, Kim D U, Kim E J, Kim G D, Kim H C, Kim I G, Kim J T, Kim J W, Kim J K, Kim S H, Kim S H, Kim S H, Kim W, Kim Y K, Ko S K, Kwon M, Kwon Y K, Lee B Y, Lee B N, Lee C H, Lee C W, Lee C S, Lee K S, Lee H J, Lee H S, Lee H S, Lee J H, Lee K O, Lee K S, Lee S D, Lee S K, Lee S H, Lee Y S, Lee Y O, Lee Y Y, Manchanda V K, Moon C B, Nam S I, Namkung W, Nolen J A, Oh B H, Oh J H, Oh Y, Park B Y, Park J A, Park J Y, Park K H, Park S H, Park T S, Park W Y, Ryu C Y, Ryu M S, Ryu S Y, Sakai H, Seo H J, Shin J W, Shin S W, Sigg P, Sim K S, So W Y, Song H S, Song T Y, Suh B J, Tenreiro C, Tong Z, Tribble R E, Woo H J, Yano Y, Yang H R, Yang Y K, Yeon Y H, Yi W J, Yu B G, Yu D H, Yoo I K, Yu S Y, Yun C C 2013 Few Body Syst. 54197
[119] Hong B 2024 Private Communication
[120] XIA J W, ZHAN W L, WEI B W, YUAN Y J, ZHAO H W, YANG J C, SHI J, SHENG L N, YANG W Q, MAO L J 2016 Science Bulletin 61467(夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军2016科学通报61467)
[121] Yang J, Sun L, Yuan Y 2023 JACoW CYCLOTRONS2022 MOAI01
[122] Zhou X, Yang J 2022 AAPPS Bull. 3235
[123] Saito T R, Dou W, Drozd V, Ekawa H, Escrig S, He Y, Kalantar-Nayestanaki N, Kasagi A, Ka- vatsyuk M, Liu E, Ma Y, Minami S, Muneem A, Nakagawa M, Nakazawa K, Rappold C, Saito N, Scheidenberger C, Taki M, Tanaka Y K, Yoshida J, Yoshimoto M, Wang H, Zhou X 2021 Nature Rev. Phys. 3803
[124] Mroczek D, Yao N, Zine K, Noronha-Hostler J, Dexheimer V, Haber A, Most E R 2024
[125] Huang M, Zhuang P 2023 Symmetry 15541
[126] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94102301. [Erratum: Phys.Rev.Lett. 96, 039901(2006)]
[127] STAR Collaboration, Adamczyk L, et al. 2017 Nature 54862
[128] STAR Collaboration, Abdallah M S, et al. 2023 Nature 614244
[129] Liang Z T, Wang Q, Ma Y G 2023 Acta Phys. Sin. 72070101(梁作堂,王群,马余刚202372070101)
[130] Yi Y 2023 Acta Phys. Sin. 72111201(尹伊2023 72111201)
[131] Pu S, Huang X G 2023 Acta Phys. Sin. 72071202(浦实,黄旭光2023 72071202)
[132] Jiang F Z, Wu X Y, Yu Q H, Cao S S, Zhang B W 2023 Acta Phys. Sin. 72072504(江泽方,吴祥宇,余华清,曹杉杉,张本威2023 72072504)
Metrics
- Abstract views: 55
- PDF Downloads: 2
- Cited By: 0