Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intermediate/high-energy heavy-ion collisions and nuclear matter equation of state

ZHANG Yapeng SUN Zhiyu YONG Gaochan FENG Zhaoqing

Citation:

Intermediate/high-energy heavy-ion collisions and nuclear matter equation of state

ZHANG Yapeng, SUN Zhiyu, YONG Gaochan, FENG Zhaoqing
cstr: 32037.14.aps.74.20241650
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The equation of state (EoS) of nuclear matter is a description of the macroscopic properties of nuclear matter under different thermodynamic conditions or external fields, which is critical for understanding the theory of the strong interaction—quantum chromodynamics (QCD), the nature of nuclei, the dynamics of heavy-ion collisions (HICs), the internal structure of compact stars, the merger of binary neutron stars, and other physical phenomena. Heavy-ion collisions (HICs) are the only method in laboratories to create nuclear matter with extreme conditions such as high temperatures and high densities. HICs at different energy levels offer the possibility to quantitatively study the properties of nuclear matter under diverse thermodynamic conditions. This paper mainly presents the current research status of the EoS of nuclear matter and introduces the fundamental observables in HICs that are sensitive to the EoS, as well as the typical experiments and results used to explore the EoS. The progress in studying the EoS containing strangeness is also described and its possible research directions in the future are also discussed. The status and progress of worldwide heavy-ion accelerators and experimental spectrometers in the high-baryon density region are introduced, including China’s large-scale scientific facilities, i.e HIRFL-CSR and HIAF, as well as the CEE experiment. Additionally, the opportunities and challenges for experimental research on the EoS of nuclear matter in China are discussed.
      Corresponding author: SUN Zhiyu, sunzhy@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12475133, 11927901, 12311540139), the Youth Team Program in Basic Research Fields Stably Supported by Chinese Academy of Sciences (Grant No. YSBR-088), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34030000), and the Western Light Project of Chinese Academy of Sciences.
    [1]

    Wilson K G 1974 Phys. Rev. D 10 2445Google Scholar

    [2]

    Ishii N, Aoki S, Hatsuda T 2007 Phys. Rev. Lett. 99 022001Google Scholar

    [3]

    Inoue T 2021 Few-Body Syst. 62 106Google Scholar

    [4]

    Nemura H 2011 Few-Body Syst. 50 105Google Scholar

    [5]

    Pásztor A 2024 EPJ Web Conf. 296 01009Google Scholar

    [6]

    Weinberg S 1979 Physica A 96 327Google Scholar

    [7]

    Weinberg S 1991 Nucl. Phys. B 363 3Google Scholar

    [8]

    Drischler C, Holt J W, Wellenhofer C 2021 Ann. Rev. Nucl. Part. Sci. 71 403Google Scholar

    [9]

    Machleidt R, Sammarruca F 2016 Phys. Scr. 91 083007Google Scholar

    [10]

    Drischler C, Hebeler K, Schwenk A 2016 Phys. Rev. C 93 054314Google Scholar

    [11]

    Lee D 2009 Prog. Part. Nucl. Phys. 63 117Google Scholar

    [12]

    Elhatisari S, Bovermann L, Ma Y, et al. 2024 Nature 630 59Google Scholar

    [13]

    马远卓, 吕炳楠, 李宁, 王倩 2024 原子核物理评论 41 172Google Scholar

    Ma Y Z, Lv B N, Li N, Wang Q 2024 Nucl. Phys. Rev. 41 172Google Scholar

    [14]

    Luo X, Shi S, Xu N, Zhang Y 2020 Particles 3 278Google Scholar

    [15]

    Borsanyi S, Fodor Z, Guenther J N, Kara R, Katz S D, Parotto P, Pasztor A, Ratti C, Szabo K K 2020 Phys. Rev. Lett. 125 052001Google Scholar

    [16]

    Andronic A, Braun-Munzinger P, Redlich K, Stachel J 2018 Nature 561 321Google Scholar

    [17]

    McLerran L, Pisarski R D 2007 Nucl. Phys. A 796 83Google Scholar

    [18]

    Weber F 2001 J. Phys. G 27 465Google Scholar

    [19]

    Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J 2010 Nature 467 1081Google Scholar

    [20]

    Romani R W, Kandel D, Filippenko A V, Brink T G, Zheng W 2022 Astrophys. J. Lett. 934 L17Google Scholar

    [21]

    Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Harding A K, Ho W C G, Lattimer J M, Ludlam R M, Mahmoodifar S, Morsink S M, Ray P S, Strohmayer T E, Wood K S, Enoto T, Foster R, Okajima T, Prigozhin G, Soong Y 2019 Astrophys. J. Lett. 887 L24Google Scholar

    [22]

    Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Ho W C G, Lattimer J M, Loewenstein M, Morsink S M, Ray P S, Wolff M T, Baker C L, Cazeau T, Manthripragada S, Markwardt C B, Okajima T, Pollard S, Cognard I, Cromartie H T, Fonseca E, Guillemot L, Kerr M, Parthasarathy A, Pennucci T T, Ransom S, Stairs I 2021 Astrophys. J. Lett. 918 L28Google Scholar

    [23]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2017 Phys. Rev. Lett. 119 161101Google Scholar

    [24]

    Li B A, Krastev P G, Wen D H, Zhang N B 2019 Eur. Phys. J. A 55 117Google Scholar

    [25]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2018 Phys. Rev. Lett. 121 161101Google Scholar

    [26]

    Alvarez-Castillo D E, Blaschke D B, Grunfeld A G, Pagura V P 2019 Phys. Rev. D 99 063010Google Scholar

    [27]

    Li B A, Cai B J, Xie W J, Zhang N B 2021 Universe 7 182Google Scholar

    [28]

    HADES Collaboration, Adamczewski-Musch J, et al. 2019 Nature Phys. 15 1040Google Scholar

    [29]

    Fuchs C, Wolter H H 2006 Eur. Phys. J. A 30 5Google Scholar

    [30]

    Garg U, Colò G 2018 Prog. Part. Nucl. Phys. 101 55Google Scholar

    [31]

    Margueron J, Hoffmann Casali R, Gulminelli F 2018 Phys. Rev. C 97 025805Google Scholar

    [32]

    Li B A, Cai B J, Chen L W, Xie W J, Xu J, Zhang N B 2022 Nuovo Cimento C 45 54

    [33]

    Bleicher M, Zabrodin E, Spieles C, Bass S, Ernst C, Soff S, Bravina L, Belkacem M, Weber H, Stöcker H, Greiner W 1999 J. Phys. G 25 1859Google Scholar

    [34]

    Sorensen A, Agarwal K, Brown K W, Chajęcki Z, Danielewicz P, Drischler C, Gandolfi S, Holt J W, Kaminski M, Ko C M, Kumar R, Li B A, Lynch W G, McIntosh A B, Newton W G, Pratt S, Savchuk O, Stefaniak M, Tews I, Tsang M B, Vogt R, Wolter H, Zbroszczyk H, Abbasi N, Aichelin J, Andronic A, Bass S A, Becattini F, Blaschke D, Bleicher M, Blume C, Bratkovskaya E, Brown B A, Brown D A, Camaiani A, Casini G, Chatziioannou K, Chbihi A, Colonna M, Cozma M D, Dexheimer V, Dong X, Dore T, Du L, Dueñas J A, Elfner H, Florkowski W, Fujimoto Y, Furnstahl R J, Gade A, Galatyuk T, Gale C, Geurts F, Gramegna F, Grozdanov S, Hagel K, Harris S P, Haxton W, Heinz U, Heller M P, Hen O, Hergert H, Herrmann N, Huang H Z, Huang X G, Ikeno N, Inghirami G, Jankowski J, Jia J, Jiménez J C, Kapusta J, Kardan B, Karpenko I, Keane D, Kharzeev D, Kugler A, Le Fèvre A, Lee D, Liu H, Lisa M A, Llope W J, Lombardo I, Lorenz M, Marchi T, McLerran L, Mosel U, Motornenko A, Müller B, Napolitani P, Natowitz J B, Nazarewicz W, Noronha J, Noronha-Hostler J, Odyniec G, Papakonstantinou P, Paulínyová Z, Piekarewicz J, Pisarski R D, Plumberg C, Prakash M, Randrup J, Ratti C, Rau P, Reddy S, Schmidt H R, Russotto P, Ryblewski R, Schäfer A, Schenke B, Sen S, Senger P, Seto R, Shen C, Sherrill B, Singh M, Skokov V, Spaliński M, Steinheimer J, Stephanov M, Stroth J, Sturm C, Sun K J, Tang A, Torrieri G, Trautmann W, Verde G, Vovchenko V, Wada R, Wang F, Wang G, Werner K, Xu N, Xu Z, Yee H U, Yennello S, Yin Y 2024 Prog. Part. Nucl. Phys. 134 104080Google Scholar

    [35]

    Voloshin S, Zhang Y 1996 Z. Phys. C 70 665Google Scholar

    [36]

    HADES Collaboration, Adamczewski-Musch J, et al. 2023 Eur. Phys. J. A 59 80Google Scholar

    [37]

    ALICE Collaboration, Aamodt K, et al. 2010 Phys. Rev. Lett. 105 252302Google Scholar

    [38]

    Herrmann N, Wessels J P, Wienold T 1999 Ann. Rev. Nucl. Part. Sci. 49 581Google Scholar

    [39]

    Danielewicz P, Lacey R, Lynch W G 2002 Science 298 1592Google Scholar

    [40]

    Herrmann N 2022 EPJ Web Conf. 259 09001Google Scholar

    [41]

    MPD Collaboration, Abgaryan V, et al. 2022 Eur. Phys. J. A 58 140Google Scholar

    [42]

    Guo D, He X, Li P, Qin Z, Hu C, Wang B, Zhou Y, Zheng K, Zhang Y, Wei X, Yang H, Hu D, Shao M, Duan L, Yu Y, Sun Z, Wang Y, Li Q, Xiao Z 2024 Eur. Phys. J. A 60 36Google Scholar

    [43]

    Brown B A, Gade A, Stroberg S R, Escher J, Fossez K, Giuliani P, Hoffman C R, Nazarewicz W, Seng C Y, Sorensen A, Vassh N, Bazin D, Brown K W, Capri M A, Crawford H, Danielewic P, Drischler C, Garcia Ruiz R F, Godbey K, Grzywacz R, Hlophe L, Holt J W, Iwasaki H, Lee D, Lenzi S M, Liddick S, Lubna R, Macchiavelli A O, Martinez Pinedo G, McCoy A, Mercenne A, Minamisono K, Monteagudo B, Navratil P, Ringle R, Sargsyan G, Schatz H, Spieker M C, Volya A, Zegers R G, Zelevinsky V, Zhang X 2025 J. Phys. G 52 050501

    [44]

    SπRIT Collaboration Shane R, et al. 2015 Nucl. Instrum. Meth. A 784 513Google Scholar

    [45]

    Hong B, Ahn D, Ahn J, Bae J, Bae Y, Bok J, Choi S, Do S, Heo C, Huh J, Hwang J, Jang Y, Kang B, Kim A, Kim B, Kim C, Kim E J, Kim G, Kim G, Kim H, Kim J, Kim J, Kim S, Kim Y, Kim Y, Kim Y, Kim Y, Kweon M, Lee C, Lee H, Lee H, Lee H, Lee J, Lee J, Lee J W, Lee J, Lee S, Lee S, Lim S, Moon D, Nam S, Park J, Park J, Seo J, Yang H 2023 Nucl. Instrum. Methods Phys. Res., Sect. B 541 260Google Scholar

    [46]

    STAR Collaboration, Abdallah M S, et al. 2022 Phys. Lett. B 827 137003Google Scholar

    [47]

    Li B A 2002 Phys. Rev. Lett. 88 192701Google Scholar

    [48]

    Chen L W, Ko C M, Li B A 2003 Nucl. Phys. A 729 809Google Scholar

    [49]

    Yong G C, Li B A, Xiao Z G, Lin Z W 2022 Phys. Rev. C 106 024902Google Scholar

    [50]

    Hartnack C, Oeschler H, Leifels Y, Bratkovskaya E L, Aichelin J 2012 Phys. Rep. 510 119Google Scholar

    [51]

    Gustafsson H A, Gutbrod H H, Kolb B, Löhner H, Ludewigt B, Poskanzer A M, Renner T, Riedesel H, Ritter H G, Warwick A, Weik F, Wieman H 1984 Phys. Rev. Lett. 52 1590Google Scholar

    [52]

    EOS Colllaboration, Partlan M D, et al. 1995 Phys. Rev. Lett. 75 2100Google Scholar

    [53]

    E895 Collaboration, Liu H, et al. 2000 Phys. Rev. Lett. 84 5488Google Scholar

    [54]

    E877 Collaboration, Barrette J, et al. 1997 Phys. Rev. C 56 3254Google Scholar

    [55]

    FOPI Collaboration, Gobbi A, et al. 1993 Nucl. Instrum. Meth. A 324 156Google Scholar

    [56]

    FOPI Collaboration, Reisdorf W, et al. 2012 Nucl. Phys. A 876 1Google Scholar

    [57]

    Xu H, Tsang M, Liu T, Liu X, Lynch W, Tan W, Verde G, VanderMolen A, Wagnera A, Xib H, Gelbke C, Beaulieu L, Davin B, Larochellec Y, Lefort T, de Souza R, Yanez R, Viola V, Charity R, Sobotka L 2000 Phys. Rev. Lett. 85 716Google Scholar

    [58]

    Zhang Y, Tian J, Cheng W, Guan F, Huang Y, Li H, Lü L, Wang R, Wang Y, Wu Q, Yi H, Zhang Z, Zhao Y, Duan L, Hu R, Huang M, Jin G, Jin S, Lu C, Ma J, Ma P, Wang J, Yang H, Yang Y, Zhang J, Zhang Y, Zhang Y, Ma C, Qiao C, Tsang M B, Xiao Z 2017 Phys. Rev. C 95 041602

    [59]

    Roca-Maza X, Centelles M, Vinas X, Warda M 2011 Phys. Rev. Lett. 106 252501Google Scholar

    [60]

    Zhang W 2023 Ph. D. Dissertation (New York: Stony Brook University

    [61]

    Donnelly T W, Dubach J, Sick I 1989 Nucl. Phys. A 503 589Google Scholar

    [62]

    PREX Collaboration, Adhikari D, et al. 2021 Phys. Rev. Lett. 126 172502Google Scholar

    [63]

    Reed B T, Fattoyev F J, Horowitz C J, Piekarewicz J 2021 Phys. Rev. Lett. 126 172503Google Scholar

    [64]

    FOPI Collaboration Y Leifels, et al. 1993 Phys. Rev. Lett. 71 963Google Scholar

    [65]

    LAND Collaboration, Blaich T, et al. 1992 Nucl. Instrum. Meth. A 314 136Google Scholar

    [66]

    Russotto P, Wu P, Zoric M, Chartier M, Leifels Y, Lemmon R, Li Q, Lukasik J, Pagano A, Pawlowski P, Trautmann W 2011 Phys. Lett. B 697 471Google Scholar

    [67]

    Cozma M D, Leifels Y, Trautmann W, Li Q, Russotto P 2013 Phys. Rev. C 88 044912Google Scholar

    [68]

    Russotto P, Gannon S, Kupny S, Lasko P, Acosta L, Adamczyk M, Al-Ajlan A, Al-Garawi M, Al-Homaidhi S, Amorini F, Auditore L, Aumann T, Ayyad Y, Basrak Z, Benlliure J, Boisjoli M, Boretzky K, Brzychczyk J, Budzanowski A, Caesar C, Cardella G, Cammarata P, Chajecki Z, Chartier M, Chbihi A, Colonna M, Cozma M D, Czech B, De Filippo E, Di Toro M, Famiano M, Gašparić I, Grassi L, Guazzoni C, Guazzoni P, Heil M, Heilborn L, Introzzi R, Isobe T, Kezzar K, Kiš M, Krasznahorkay A, Kurz N, La Guidara E, Lanzalone G, Le Fèvre A, Leifels Y, Lemmon R C, Li Q F, Lombardo I, Lukasik J, Lynch W G, Marini P, Matthews Z, May L, Minniti T, Mostazo M, Pagano A, Pagano E V, Papa M, Pawlowski P, Pirrone S, Politi G, Porto F, Reviol W, Riccio F, Rizzo F, Rosato E, Rossi D, Santoro S, Sarantites D G, Simon H, Skwirczynska I, Sosin Z, Stuhl L, Trautmann W, Trifirò A, Trimarchi M, Tsang M B, Verde G, Veselsky M, Vigilante M, Wang Y, Wieloch A, Wigg P, Winkelbauer J, Wolter H H, Wu P, Yennello S, Zambon P, Zetta L, Zoric M 2016 Phys. Rev. C 94 034608Google Scholar

    [69]

    Gaitanos T, Di Toro M, Typel S, Baran V, Fuchs C, Greco V, Wolter H H 2004 Nucl. Phys. A 732 24Google Scholar

    [70]

    Li Q, Li Z, Soff S, Bleicher M, Stoecker H 2005 Phys. Rev. C 72 034613Google Scholar

    [71]

    FOPI Collaboration, Reisdorf W, et al. 2007 Nucl. Phys. A 781 459Google Scholar

    [72]

    Xiao Z, Li B A, Chen L W, Yong G C, Zhang M 2009 Phys. Rev. Lett. 102 062502Google Scholar

    [73]

    Feng Z Q, Jin G M 2010 Phys. Lett. B 683 140Google Scholar

    [74]

    Xie W J, Su J, Zhu L, Zhang F S 2013 Phys. Lett. B 718 1510Google Scholar

    [75]

    Xu J, Chen L W, Tsang M B, Wolter H, Zhang Y X, Aichelin J, Colonna M, Cozma D, Danielewicz P, Feng Z Q, Le Fevre A, Gaitanos T, Hartnack C, Kim K, Kim Y, Ko C M, Li B A, Li Q F, Li Z X, Napolitani P, Ono A, Papa M, Song T, Su J, Tian J L, Wang N, Wang Y J, Weil J, Xie W J, Zhang F S, Zhang G Q 2016 Phys. Rev. C 93 044609Google Scholar

    [76]

    Xu J, Wolter H, Colonna M, Cozma M D, Danielewicz P, Ko C M, Ono A, Tsang M B, Zhang Y X, Cheng H G, Ikeno N, Kumar R, Su J, Zheng H, Zhang Z, Chen L W, Feng Z Q, Hartnack C, Le Fèvre A, Li B A, Nara Y, Ohnishi A, Zhang F S 2024 Phys. Rev. C 109 044609Google Scholar

    [77]

    E-0895 Collaboration, Klay J L, et al. 2003 Phys. Rev. C 68 054905Google Scholar

    [78]

    Wolf A, Appenheimer M, Averbeck R, Charbonnier Y, Diaz J, Doppenschmidt A, Hejny V, Hlavac S, Holzmann R, Kugler A, Lohner H, Marin A, Metag V, Novotny R, Ostendorf R, Pleskac R, Schubert A, Schutz Y, Simon R, Stratmann R, Stroher H, Tlusty P, Vogt P, Wagner V, Weiss J, Wilschut H, Wissmann F, Wolf M 1998 Phys. Rev. Lett. 80 5281Google Scholar

    [79]

    Wagner A, Muntz C, Oeschler H, Sturm C T, Barth R, Cieslak M, Debowski M, Grosse E, Koczon P, Mang M, Miskowiec D, Schicker R, Schwab E, Senger P, Beckerle P, Brill D, Shin Y, Strobele H, Walus W, Kohlmeyer B, Puhlhofer F, Speer J, Volkel K 1998 Phys. Lett. B 420 20Google Scholar

    [80]

    HADES Collaboration, Agakishiev G, et al. 2009 Eur. Phys. J. A 41 243Google Scholar

    [81]

    HADES Collaboration, Adamczewski-Musch J, et al. 2020 Eur. Phys. J. A 56 259Google Scholar

    [82]

    Kubo T, Ishihara M, Inabe N, Kumagai H, Tanihata I, Yoshida K, Nakamura T, Okuno H, Shimoura S, Asahi K 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 70 309

    [83]

    Motobayashi T 2010 Nucl. Phys. A 834 707cGoogle Scholar

    [84]

    Kurata-Nishimura M 2017 Proceedings of Science INPC2016 p218

    [85]

    Barney J, Estee J, Lynch W, Isobe T, Jhang G, Kurata-Nishimura M, McIntosh A, Murakami T, Shane R, Tangwancharoen S, Tsang M, Cerizza G, Kaneko M, Lee J, Tsang C, Wang R, Anderson C, Baba H, Chajecki Z, Famiano M, Hodges-Showalter R, Hong B, Kobayashi T, Lasko P, Łukasik J, Nakatsuka N, Olsen R, Otsu H, Pawłowski P, Pelczar K, Powell W, Sakurai H, Santamaria C, Setiawan H, Taketani A, Winkelbauer J, Xiao Z, Yennello S, Yurkon J, Zhang Y 2021 Rev. Sci. Instrum. 92 063302Google Scholar

    [86]

    Lasko P, Adamczyk M, Brzychczyk J, Hirnyk P, Łukasik J, Pawłowski P, Pelczar K, Snoch A, Sochocka A, Sosin Z, Barney J, Cerizza G, Estee J, Isobe T, Jhang G, Kaneko M, Kurata-Nishimura M, Lynch W, Murakami T, Santamaria C, Tsang M, Zhang Y 2017 Nucl. Instrum. Meth. A 856 92Google Scholar

    [87]

    Barney J E 2019 Ph. D. Dissertation (East Lansing: Michigan State University

    [88]

    SπRIT & TEMP Collaboration, Jhang G, et al. 2021 Phys. Lett. B 813 136016Google Scholar

    [89]

    Yong G C 2021 Phys. Rev. C 104 014613Google Scholar

    [90]

    Glendenning N K 1982 Phys. Lett. B 114 392Google Scholar

    [91]

    Millener D J, Dover C B, Gal A 1988 Phys. Rev. C 38 2700Google Scholar

    [92]

    Gal A, Hungerford E V, Millener D J 2016 Rev. Mod. Phys. 88 035004Google Scholar

    [93]

    Schaffner J, Mishustin I N 1996 Phys. Rev. C 53 1416Google Scholar

    [94]

    Schaffner-Bielich J 2010 Nucl. Phys. A 835 279Google Scholar

    [95]

    Yong G C 2023 Phys. Rev. D 108 L091507Google Scholar

    [96]

    Lonardoni D, Lovato A, Gandolfi S, Pederiva F 2015 Phys. Rev. Lett. 114 092301Google Scholar

    [97]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 340 6131

    [98]

    Bombaci I 2017 JPS Conf. Proc. 17 101002

    [99]

    Gerstung D, Kaiser N, Weise W 2020 Eur. Phys. J. A 56 175Google Scholar

    [100]

    Feng Z Q 2021 Eur. Phys. J. A 57 18Google Scholar

    [101]

    Ji Y 2024 EPJ Web Conf. 296 02004Google Scholar

    [102]

    STAR Collaboration, Aboona B, et al. 2023 Phys. Rev. Lett. 130 212301Google Scholar

    [103]

    Oliinychenko D, Shen C, Koch V 2021 Phys. Rev. C 103 034913Google Scholar

    [104]

    Neidig T, Gallmeister K, Greiner C, Bleicher M, Vovchenko V 2022 Phys. Lett. B 827 136891Google Scholar

    [105]

    Sun K J, Wang R, Ko C M, Ma Y G, Shen C 2024 Nat. Commun. 15 1074Google Scholar

    [106]

    Coci G, Gläßel S, Kireyeu V, Aichelin J, Blume C, Bratkovskaya E, Kolesnikov V, Voronyuk V 2023 Phys. Rev. C 108 014902Google Scholar

    [107]

    Bruce R, Alemany Fernandez R, Argyropoulos T, Bartosik H, Bracco C, Cai R, D’ Andrea M, Frasca A, Hermes P, Jowett J, Mirarchi D, Redaelli S, Solfaroli M, Triantafyllou N, Wenninger J 2023 14th International Particle Accelerator Conference (IPAC 2023) Venice, Italy, May 7–12, 2023 pMOPL021

    [108]

    Galatyuk T 2019 Nucl. Phys. A 982 163Google Scholar

    [109]

    Fu W J, Pawlowski J M, Rennecke F 2020 Phys. Rev. D 101 054032Google Scholar

    [110]

    Gunkel P J, Fischer C S 2021 Phys. Rev. D 104 054022Google Scholar

    [111]

    Hippert M, Grefa J, Manning T A, Noronha J, Noronha-Hostler J, Portillo Vazquez I, Ratti C, Rougemont R, Trujillo M 2024 Phys. Rev. D 110 094006

    [112]

    Basar G 2024 Phys. Rev. C 110 015203Google Scholar

    [113]

    Odyniec G 2019 Proceedings of Science CORFU2018 p151

    [114]

    Spiller P, Balss R, Bartolome P, Blaurock J, Blell U, Boine-Frankenheim O, Bozyk L, Chorowski M, Eisel T, Frey M, Giacomini T, Kaether F, Khodzhibagiyan H, Klammes S, Klingbeil H, Koenig H, Kornilov V, Kowina P, Lens D, Meier J, Ondreka D, Petzenhauser I, Plyusnin V, Pongrac I, Pyka N, Raginel V, Rottlaender P, Roux C, Schmidt J, Schwickert M, Sugita K, Szwangruber A, Szwangruber P, Trockel R, Waldt A, Welker H, Wilfert S, Winkler T, Winters D 2020 JINST 15 T12013Google Scholar

    [115]

    Friman B, Hohne C, Knoll J, Leupold S , Randrup J, Rapp R, Senger P 2011 The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments (Berlin: Springer

    [116]

    Kapishin M 2019 Nucl. Phys. A 982 967Google Scholar

    [117]

    Sissakian A N, Kekelidze V D, Sorin A S 2009 Nucl. Phys. A 827 630CGoogle Scholar

    [118]

    Ahn J K, Bak S I, Blumenfeld Y, et al. 2013 Few Body Syst. 54 197Google Scholar

    [119]

    夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军 2016 科学通报 61 467

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Zhao H W, Yant J C, Shi J, Sheng L N, Yang W Q, Mao L J 2016 Science Bulletin 61 467

    [120]

    Yang J, Sun L, Yuan Y 2023 JACoW CYCLOTRONS2022 MOAI01

    [121]

    Zhou X, Yang J 2022 AAPPS Bull. 32 35Google Scholar

    [122]

    Saito T R, Dou W, Drozd V, et al. 2021 Nat. Rev. Phys. 3 803Google Scholar

    [123]

    Mroczek D, Yao N, Zine K, Noronha-Hostler J, Dexheimer V, Haber A, Most E R 2024 arXiv:2404.01658 [astro-ph.HE]

    [124]

    Huang M, Zhuang P 2023 Symmetry 15 541Google Scholar

    [125]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: Phys. Rev. Lett. 96 039901 (2006)]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: Phys. Rev. Lett. 96 039901 (2006)]

    [126]

    STAR Collaboration, Adamczyk L, et al. 2017 Nature 548 62Google Scholar

    [127]

    STAR Collaboration, Abdallah M S, et al. 2023 Nature 614 244Google Scholar

    [128]

    梁作堂, 王群, 马余刚 2023 72 070101Google Scholar

    Liang Z T, Wang Q, Ma Y G 2023 Acta Phys. Sin. 72 070101Google Scholar

    [129]

    尹伊 2023 72 111201Google Scholar

    Yi Y 2023 Acta Phys. Sin. 72 111201Google Scholar

    [130]

    浦实, 黄旭光 2023 72 071202Google Scholar

    Pu S, Huang X G 2023 Acta Phys. Sin. 72 071202Google Scholar

    [131]

    江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威 2023 72 072504Google Scholar

    Jiang F Z, Wu X Y, Yu Q H, Cao S S, Zhang B W 2023 Acta Phys. Sin. 72 072504Google Scholar

  • 图 1  用温度、重子密度和同位旋不对称度表示的核物质相图. 图片更新自文献[8]

    Figure 1.  Nuclear matter phase diagram represented by temperature, baryon density and isospin asymmetry. Figure taken from Ref. [8]

    图 2  对称核物质和中子核物质状态方程随密度的变化, 图片更新自文献[29]

    Figure 2.  EoS of isospin symmetric nuclear matter and neutron matter as a function of the density, figure taken and updated from Ref. [29].

    图 3  地面重离子碰撞实验和天文观测提取到$ E_\text{sym}(\rho_0) $(a)和$ L_\text{sym}(\rho_0) $(b)的结果. 图(a)和图(b)均取自文献[24]

    Figure 3.  $ E_\text{sym}(\rho_0) $ (a) and $ L_\text{sym}(\rho_0) $ (b) extracted from terrestrial heavy-ion experiments and astrophysical observations respectively. Panel (a) and panel (b) both are taken from Ref. [24].

    图 4  重离子碰撞中的碰撞参数和反应平面示意图

    Figure 4.  Sketch of impact parameter and reaction plane in Heavy-ion collisions.

    图 5  UrQMD模型在仅考虑强子相情况下, 模拟0.2—12.8 GeV/u的对心Au+Au碰撞中的温度和密度关联图, 实线和虚线分别表示硬和软的状态方程. 图片取自文献[34]

    Figure 5.  Diagram of temperature and maximum density in central Au+Au collisions at 0.2–12.8 GeV/u simulated by the UrQMD model with hadron phase only. Figure taken from Ref. [34].

    图 6  直接流$ v_1 $和快度在$ y_{{\mathrm{cm}}} = 0 $的斜率与碰撞能量的关联图. 图片取自文献[36]

    Figure 6.  Slope of $ v_1 $ as a function of rapidity at $ y_{{\mathrm{cm}}} = 0 $ of proton versus collision energies. Figure taken from Ref. [36].

    图 7  质子椭圆流与碰撞能量的依赖关系. 图片取自文献[37]

    Figure 7.  Elliptic flow of proton as a function of collision energies, figure taken from Ref. [37].

    图 8  STAR实验测量的组分夸克数约化强子集体流与约化横能量的依赖关系. 图片取自文献[46]

    Figure 8.  Constitute quark number scaled elliptic flow of hadrons as a function of quark number scaled transverse energy measured by the STAR experiment. Figure taken from Ref. [46].

    图 9  对称核物质压强随密度变化的实验限制. 图片取自文献[34]

    Figure 9.  Pressure of the symmetric nuclear matter as a function of density constrained by experimental measurements. Figure taken from Ref. [34]

    图 10  KaoS实验测量$ {\mathrm{K}}^+ $介子在Au+Au和Cu+Cu碰撞中产额比随碰撞能量的变化, 来自输运模型IQMD和RQMD的硬EoS和软EoS分别用短线和点线表示. 图片取自文献[50]

    Figure 10.  Yield ratio of $ {\mathrm{K}}^+ $ in Au+Au and Cu+Cu collisions as a function of collision energy measured by the KaoS experiment. The hard and soft EoS from the transport models IQMD and RQMD are represented by dashed and dotted lines, respectively. Figure taken from Ref. [50].

    图 11  FOPI实验测量0.4, 1.0和1.5 GeV/u的Au+Au碰撞中质子和氘核的椭圆流随快度的变化, 基于IQMD模型硬EoS和软EoS理论计算结果分别用虚线和实线表示. 图片取自文献[56]

    Figure 11.  Elliptic flow of proton and deuteron as a function of rapidity in Au+Au collisions at 0.4, 1.0, and 1.5 GeV/u mesured by the FOPI experiment, red dashed line and black line represent the IQMD predictions with hard EoS and soft EoS respectively. Figure taken from Ref. [56].

    图 12  对称能$ E_{\text{sym}} $与密度的依赖关系, 其中不同的点来自不同的实验. 图片取自文献[34]

    Figure 12.  The symmetric energy $ E_{\text{sym}} $ as a function of nuclear matter density, symbols represent results obtained from different experiments. Figure taken from Ref. [34]

    图 13  (a) 30 MeV/u的Ar+Au反应中, 轻带电粒子的约化中子丰度随实验室角度的变化关系, 曲线为理论模型计算结果; (b)轻核约化中子丰度小角度区的下降斜率(红色区域)与理论计算(空心圆圈)的比较. 图片取自文献[58]

    Figure 13.  (a) In 30 meV/u Ar+Au reactions, $ Y_{{\mathrm{n, ex}}}/Y_{{\mathrm{p, CL}}} $ as a function of polar angle, curves are theoretical calculations; (b) comparison the slope of $ Y_{{\mathrm{n, ex}}}/Y_{{\mathrm{p, CL}}} $ in $ \theta_{{\mathrm{lab}}}<100^{\circ} $ from experiment (red band) and theoretical predictions (open circles). Figure taken from Ref. [58]

    图 14  PREX实验装置示意图. 图片取自文献[60]

    Figure 14.  Schematic draw of PREX-II experiment. Figure taken from Ref. [60]

    图 15  不同的实验和理论给出的对称能参数$ L_\text{sym}-J_\text{sym} $的限制, 黑色空心圈为PREX-II测量结果, 红色实线和虚线表示其他实验中提取的$ L_\text{sym} = (58.9\pm16 )$ MeV的中心值和误差. 图片更新自文献[63]

    Figure 15.  Constraints on symmetry energy parameters $ L_\text{sym}-J_\text{sym} $, open circle presents the results of PREX-II experiment, solid and dashed horizontal lines represent the central value and error of $ L_\text{sym} = (58.9\pm16 )$ MeV, respectively. Figure was taken and updated from Ref. [63].

    图 16  FOPI-LAND实验探测器布局图. 图片取自文献[64]

    Figure 16.  Detector layout of the FOPI-LAND experiment. Figure taken from Ref. [64]

    图 17  ASY-EOS实验探测器布局图, 图片取自文献[68]

    Figure 17.  ASY-EOS experiment detector layout, figure were taken from Ref. [68]

    图 18  400 MeV/u的Au+Au半中心碰撞(b < 7.5 fm)中ASY-EOS实验测量到的中子和带电粒子椭圆流的比值$ v_2^{\mathrm{n}}/v_2^{{\mathrm{ch}}} $和横动量的关联(黑色方框), 三角和圆分别代表UrQMD在硬($ \gamma = 1.5 $)和软($ \gamma = 0.5 $)对称能时计算结果, 实线是对理论计算结果做线性延拓, 得到与实验数据符合得最好时$ \gamma = 0.75\pm0.1 $. 图片取自文献[68]

    Figure 18.  Elliptic flow ratio of neutron and charged particle as a function of transverse momentum, in semi-central Au+Au collisions (b < 7.5 fm) at 400 MeV/u measured by ASY-EoS experiment. Triangles and squares are UrQMD predictions with hard ($ \gamma = 1.5 $) and soft ($ \gamma = 0.5 $) symmetry energy, solid line is the linear interpolation of predictions which can describe the data best, correspond to $ \gamma = 0.75\pm0.1 $. Figure taken from Ref. [68]

    图 19  FOPI实验测量400 MeV/u的核核中心碰撞中$ {\pi}^-/{\pi}^+ $产额比对碰撞系统N/Z的依赖(空心菱形)和IBUU04模型在x = 1.0 (软EoS)、0.5 (中等EoS)和0 (硬EoS)模拟结果比较, 图片取自文献[72]

    Figure 19.  $ {\pi}^-/{\pi}^+ $ yield ratio measured the FOPI experiment in central nucleus-nucleus collisions at 400 MeV/u as a function of N/Z ratio of the colliding systems (open diamonds), and compared simulation results from the IBUU04 model for x = 1.0 (soft EoS), 0.5 (medium EoS), and 0 (hard EoS). Figure taken from Ref. [72]

    图 20  HADES实验(方框)、FOPI实验(圆点)、Stream chamber(三角)和E895(五角星)测量到的约化π多重数与$ \langle {A}_\text{part}\rangle $的关系. 图片取自文献[81]

    Figure 20.  π multiplicity measured by HADES (squares), FOPI (filled circles), Stream chamber (triangles), and E895 experiment (star) as a function of $ \langle {A}_\text{part} \rangle $. Figure taken from Ref. [81]

    图 21  SπRIT实验装置图. 图片取自文献[84]

    Figure 21.  SπRIT experiment setup. Figure taken from Ref. [84]

    图 22  SπRIT实验中Tyoto-Array和前角区触发探测器 (KATANA)实物照片. 图片取自文献[87]

    Figure 22.  Photo of the Tyoto-Array and the KATANA detector of the SπRIT experiment. Figure taken from Ref. [87]

    图 23  (a) SπRIT实验测量270 MeV/u时, 不同Sn+Sn碰撞系统$ {\pi}^-/{\pi}^+ $产额比; (b)系统132Sn+124Sn和108Sn+112Sn系统双$ \pi^-/\pi^+ $产额比; 7个输运模型计算结果用不同颜色标记. 图片取自文献[88]

    Figure 23.  (a) $ \pi^-/\pi^+ $ yield ratio measured by the SπRIT experiment in Sn+Sn collisions with different N/Z ratio; (b) double ${\pi}^-/{\pi}^+ $ yield ratio in 132Sn+124Sn and 108Sn+112Sn, results from 7 transport models are marked by bands with different color. Figure taken from Ref. [88]

    图 24  中子星质量(M)和半径(R)的关系, 其中绿色区域为核物质, 红色区域代表在核物质基础上再加入$ {\Lambda}{\mathrm{N}} $相互作用后中子星的M-R关系, 其中考虑了两种都可以描述超核数据的YNN相互作用. 图片取自文献[96]

    Figure 24.  The relationship between the mass (M) and radius (R) of a neutron star, where the green region represents pure nuclear matter, and the red region shows the M-R relationship of neutron stars after incorporating ΛN interactions on top of the nuclear matter, considering two types of YNN interactions that can both describe hyper-nuclear data. Figure taken from Ref. [96]

    图 25  对称核物质(a)和中子核物质(b)中, 超子-核子(YN)和超子-核子-核子(YNN) 三体相互作用随密度的函数关系. 图片取自文献[99]

    Figure 25.  In symmetric nuclear matter (a) and pure neutron matter (b), the hyperon-nucleon (YN) and three-body hyperon-nucleon-nucleon (YNN) interactions as a function of the density. Figure taken from Ref. [99]

    图 26  超氚$ ^3_{\Lambda}\text{H} $产额随重离子碰撞能量的变化. 图片取自文献[101]

    Figure 26.  Production yields of hyper-triton $ ^3_{\Lambda}\text{H} $ as a function of colliding energies in HICs. Figure taken from Ref. [101]

    图 27  3 GeV Au+Au碰撞5%—40%碰撞中心度中$ ^3_{\Lambda}\text{H} $和$ ^4_{\Lambda}\text{H} $直接流与快度依赖关系. 图片取自文献[102]

    Figure 27.  Directed flow of $ ^3_{\Lambda}\text{H} $ and $ ^4_{\Lambda}\text{H} $ as a function of the rapidity at 3 GeV Au+Au collisions in 5%–40% centrality. Figure taken from Ref. [102]

    图 28  从能量为$ \sqrt{s_{{\mathrm{NN}}}} = 2—5020 $ GeV重离子碰撞数据中提取到的化学冻出温度(T)和重子化学势($ \mu_{\mathrm{B}} $). 图片取自文献[108]

    Figure 28.  Chemical freeze-out temperature (T) and baryon chemical potential ($ \mu_{\mathrm{B}} $) extracted from HICs with colliding energy $ \sqrt{s_{{\mathrm{NN}}}} = 2-5020 $ GeV. Figure taken from Ref. [108]

    图 29  FAIR装置上的CBM实验和HADES实验的探测器布局示意图. 图片取自文献[40]

    Figure 29.  Schematic diagram of the detector layout of the CBM experiment and the HADES experiment at the FAIR facility. Figure taken from Ref. [40]

    图 30  NICA装置上的MPD实验探测器布局示意图. 图片取自文献[41]

    Figure 30.  Schematic diagram of the detector layout of the MPD experiment at the NICA facility. Figure taken from Ref. [41]

    图 31  韩国RAON装置上的LAMPS实验探测器布局示意图. 图片取自文献[45]

    Figure 31.  Schematic diagram of the LAMPS experiment at the RAON facility. Figure taken from Ref. [45].

    图 32  HIRFL-CSR加速器布局示意图. 图片取自文献[119]

    Figure 32.  Schematic diagram of the HIRFL-CSR facility. Figure taken from Ref. [119]

    图 33  低温高密核物质测量谱仪探测器布局示意图

    Figure 33.  Schematic diagram of the CEE experiment.

    图 34  强流重离子加速器装置(HIAF)布局示意图. 图片取自文献[121]

    Figure 34.  Schematic diagram of the HIAF facility. Figure taken from Ref. [121].

    表 1  世界上重离子加速器与其典型实验, 基于文献[108]数据扩充

    Table 1.  Heavy-ion accelerator in the world and its typical Experiments, expanded based on data listed in Ref. [108]

    Facility $ \sqrt{s_{{\mathrm{NN}}}} $/GeV Period Experiments
    Bevalac 2.0—2.7 1975-1993 EOS/et al.
    SIS18 2.4—2.7 1990—now FOPI/Hades/et al.
    FRIB 1.9—2.1 >2025 AT-TPC$ ^* $
    RIBF 1.9—2.1 1986—now SπRIT
    RAON 1.9—2.0 >2030 LAMPS
    HIRFL 2.0—2.4 2008—now CEE/ETE
    Nuclotron 2.0—3.5 2000—now BM@N
    JPARC-HI 2.0—6.2 >2030 DHS
    SIS100 2.7—5.0 >2029 CBM/Hades
    NICA 2.7—11.0 >2025 BM@N/MPD
    RHIC 3.0—200 2000—2025 STAR
    SPS 4.5—17.3 1981—now NA49/NA61/SHINE
    AGS 2.7—4.8 2022—now E895/et al.
    HIAF 2.2—3.5 >2027 CEE+/CHNS
    LHC 2760 2018—now ALICE
    LHC 72 >2027 LHCb/ALICE-FT
    DownLoad: CSV
    Baidu
  • [1]

    Wilson K G 1974 Phys. Rev. D 10 2445Google Scholar

    [2]

    Ishii N, Aoki S, Hatsuda T 2007 Phys. Rev. Lett. 99 022001Google Scholar

    [3]

    Inoue T 2021 Few-Body Syst. 62 106Google Scholar

    [4]

    Nemura H 2011 Few-Body Syst. 50 105Google Scholar

    [5]

    Pásztor A 2024 EPJ Web Conf. 296 01009Google Scholar

    [6]

    Weinberg S 1979 Physica A 96 327Google Scholar

    [7]

    Weinberg S 1991 Nucl. Phys. B 363 3Google Scholar

    [8]

    Drischler C, Holt J W, Wellenhofer C 2021 Ann. Rev. Nucl. Part. Sci. 71 403Google Scholar

    [9]

    Machleidt R, Sammarruca F 2016 Phys. Scr. 91 083007Google Scholar

    [10]

    Drischler C, Hebeler K, Schwenk A 2016 Phys. Rev. C 93 054314Google Scholar

    [11]

    Lee D 2009 Prog. Part. Nucl. Phys. 63 117Google Scholar

    [12]

    Elhatisari S, Bovermann L, Ma Y, et al. 2024 Nature 630 59Google Scholar

    [13]

    马远卓, 吕炳楠, 李宁, 王倩 2024 原子核物理评论 41 172Google Scholar

    Ma Y Z, Lv B N, Li N, Wang Q 2024 Nucl. Phys. Rev. 41 172Google Scholar

    [14]

    Luo X, Shi S, Xu N, Zhang Y 2020 Particles 3 278Google Scholar

    [15]

    Borsanyi S, Fodor Z, Guenther J N, Kara R, Katz S D, Parotto P, Pasztor A, Ratti C, Szabo K K 2020 Phys. Rev. Lett. 125 052001Google Scholar

    [16]

    Andronic A, Braun-Munzinger P, Redlich K, Stachel J 2018 Nature 561 321Google Scholar

    [17]

    McLerran L, Pisarski R D 2007 Nucl. Phys. A 796 83Google Scholar

    [18]

    Weber F 2001 J. Phys. G 27 465Google Scholar

    [19]

    Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J 2010 Nature 467 1081Google Scholar

    [20]

    Romani R W, Kandel D, Filippenko A V, Brink T G, Zheng W 2022 Astrophys. J. Lett. 934 L17Google Scholar

    [21]

    Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Harding A K, Ho W C G, Lattimer J M, Ludlam R M, Mahmoodifar S, Morsink S M, Ray P S, Strohmayer T E, Wood K S, Enoto T, Foster R, Okajima T, Prigozhin G, Soong Y 2019 Astrophys. J. Lett. 887 L24Google Scholar

    [22]

    Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Ho W C G, Lattimer J M, Loewenstein M, Morsink S M, Ray P S, Wolff M T, Baker C L, Cazeau T, Manthripragada S, Markwardt C B, Okajima T, Pollard S, Cognard I, Cromartie H T, Fonseca E, Guillemot L, Kerr M, Parthasarathy A, Pennucci T T, Ransom S, Stairs I 2021 Astrophys. J. Lett. 918 L28Google Scholar

    [23]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2017 Phys. Rev. Lett. 119 161101Google Scholar

    [24]

    Li B A, Krastev P G, Wen D H, Zhang N B 2019 Eur. Phys. J. A 55 117Google Scholar

    [25]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2018 Phys. Rev. Lett. 121 161101Google Scholar

    [26]

    Alvarez-Castillo D E, Blaschke D B, Grunfeld A G, Pagura V P 2019 Phys. Rev. D 99 063010Google Scholar

    [27]

    Li B A, Cai B J, Xie W J, Zhang N B 2021 Universe 7 182Google Scholar

    [28]

    HADES Collaboration, Adamczewski-Musch J, et al. 2019 Nature Phys. 15 1040Google Scholar

    [29]

    Fuchs C, Wolter H H 2006 Eur. Phys. J. A 30 5Google Scholar

    [30]

    Garg U, Colò G 2018 Prog. Part. Nucl. Phys. 101 55Google Scholar

    [31]

    Margueron J, Hoffmann Casali R, Gulminelli F 2018 Phys. Rev. C 97 025805Google Scholar

    [32]

    Li B A, Cai B J, Chen L W, Xie W J, Xu J, Zhang N B 2022 Nuovo Cimento C 45 54

    [33]

    Bleicher M, Zabrodin E, Spieles C, Bass S, Ernst C, Soff S, Bravina L, Belkacem M, Weber H, Stöcker H, Greiner W 1999 J. Phys. G 25 1859Google Scholar

    [34]

    Sorensen A, Agarwal K, Brown K W, Chajęcki Z, Danielewicz P, Drischler C, Gandolfi S, Holt J W, Kaminski M, Ko C M, Kumar R, Li B A, Lynch W G, McIntosh A B, Newton W G, Pratt S, Savchuk O, Stefaniak M, Tews I, Tsang M B, Vogt R, Wolter H, Zbroszczyk H, Abbasi N, Aichelin J, Andronic A, Bass S A, Becattini F, Blaschke D, Bleicher M, Blume C, Bratkovskaya E, Brown B A, Brown D A, Camaiani A, Casini G, Chatziioannou K, Chbihi A, Colonna M, Cozma M D, Dexheimer V, Dong X, Dore T, Du L, Dueñas J A, Elfner H, Florkowski W, Fujimoto Y, Furnstahl R J, Gade A, Galatyuk T, Gale C, Geurts F, Gramegna F, Grozdanov S, Hagel K, Harris S P, Haxton W, Heinz U, Heller M P, Hen O, Hergert H, Herrmann N, Huang H Z, Huang X G, Ikeno N, Inghirami G, Jankowski J, Jia J, Jiménez J C, Kapusta J, Kardan B, Karpenko I, Keane D, Kharzeev D, Kugler A, Le Fèvre A, Lee D, Liu H, Lisa M A, Llope W J, Lombardo I, Lorenz M, Marchi T, McLerran L, Mosel U, Motornenko A, Müller B, Napolitani P, Natowitz J B, Nazarewicz W, Noronha J, Noronha-Hostler J, Odyniec G, Papakonstantinou P, Paulínyová Z, Piekarewicz J, Pisarski R D, Plumberg C, Prakash M, Randrup J, Ratti C, Rau P, Reddy S, Schmidt H R, Russotto P, Ryblewski R, Schäfer A, Schenke B, Sen S, Senger P, Seto R, Shen C, Sherrill B, Singh M, Skokov V, Spaliński M, Steinheimer J, Stephanov M, Stroth J, Sturm C, Sun K J, Tang A, Torrieri G, Trautmann W, Verde G, Vovchenko V, Wada R, Wang F, Wang G, Werner K, Xu N, Xu Z, Yee H U, Yennello S, Yin Y 2024 Prog. Part. Nucl. Phys. 134 104080Google Scholar

    [35]

    Voloshin S, Zhang Y 1996 Z. Phys. C 70 665Google Scholar

    [36]

    HADES Collaboration, Adamczewski-Musch J, et al. 2023 Eur. Phys. J. A 59 80Google Scholar

    [37]

    ALICE Collaboration, Aamodt K, et al. 2010 Phys. Rev. Lett. 105 252302Google Scholar

    [38]

    Herrmann N, Wessels J P, Wienold T 1999 Ann. Rev. Nucl. Part. Sci. 49 581Google Scholar

    [39]

    Danielewicz P, Lacey R, Lynch W G 2002 Science 298 1592Google Scholar

    [40]

    Herrmann N 2022 EPJ Web Conf. 259 09001Google Scholar

    [41]

    MPD Collaboration, Abgaryan V, et al. 2022 Eur. Phys. J. A 58 140Google Scholar

    [42]

    Guo D, He X, Li P, Qin Z, Hu C, Wang B, Zhou Y, Zheng K, Zhang Y, Wei X, Yang H, Hu D, Shao M, Duan L, Yu Y, Sun Z, Wang Y, Li Q, Xiao Z 2024 Eur. Phys. J. A 60 36Google Scholar

    [43]

    Brown B A, Gade A, Stroberg S R, Escher J, Fossez K, Giuliani P, Hoffman C R, Nazarewicz W, Seng C Y, Sorensen A, Vassh N, Bazin D, Brown K W, Capri M A, Crawford H, Danielewic P, Drischler C, Garcia Ruiz R F, Godbey K, Grzywacz R, Hlophe L, Holt J W, Iwasaki H, Lee D, Lenzi S M, Liddick S, Lubna R, Macchiavelli A O, Martinez Pinedo G, McCoy A, Mercenne A, Minamisono K, Monteagudo B, Navratil P, Ringle R, Sargsyan G, Schatz H, Spieker M C, Volya A, Zegers R G, Zelevinsky V, Zhang X 2025 J. Phys. G 52 050501

    [44]

    SπRIT Collaboration Shane R, et al. 2015 Nucl. Instrum. Meth. A 784 513Google Scholar

    [45]

    Hong B, Ahn D, Ahn J, Bae J, Bae Y, Bok J, Choi S, Do S, Heo C, Huh J, Hwang J, Jang Y, Kang B, Kim A, Kim B, Kim C, Kim E J, Kim G, Kim G, Kim H, Kim J, Kim J, Kim S, Kim Y, Kim Y, Kim Y, Kim Y, Kweon M, Lee C, Lee H, Lee H, Lee H, Lee J, Lee J, Lee J W, Lee J, Lee S, Lee S, Lim S, Moon D, Nam S, Park J, Park J, Seo J, Yang H 2023 Nucl. Instrum. Methods Phys. Res., Sect. B 541 260Google Scholar

    [46]

    STAR Collaboration, Abdallah M S, et al. 2022 Phys. Lett. B 827 137003Google Scholar

    [47]

    Li B A 2002 Phys. Rev. Lett. 88 192701Google Scholar

    [48]

    Chen L W, Ko C M, Li B A 2003 Nucl. Phys. A 729 809Google Scholar

    [49]

    Yong G C, Li B A, Xiao Z G, Lin Z W 2022 Phys. Rev. C 106 024902Google Scholar

    [50]

    Hartnack C, Oeschler H, Leifels Y, Bratkovskaya E L, Aichelin J 2012 Phys. Rep. 510 119Google Scholar

    [51]

    Gustafsson H A, Gutbrod H H, Kolb B, Löhner H, Ludewigt B, Poskanzer A M, Renner T, Riedesel H, Ritter H G, Warwick A, Weik F, Wieman H 1984 Phys. Rev. Lett. 52 1590Google Scholar

    [52]

    EOS Colllaboration, Partlan M D, et al. 1995 Phys. Rev. Lett. 75 2100Google Scholar

    [53]

    E895 Collaboration, Liu H, et al. 2000 Phys. Rev. Lett. 84 5488Google Scholar

    [54]

    E877 Collaboration, Barrette J, et al. 1997 Phys. Rev. C 56 3254Google Scholar

    [55]

    FOPI Collaboration, Gobbi A, et al. 1993 Nucl. Instrum. Meth. A 324 156Google Scholar

    [56]

    FOPI Collaboration, Reisdorf W, et al. 2012 Nucl. Phys. A 876 1Google Scholar

    [57]

    Xu H, Tsang M, Liu T, Liu X, Lynch W, Tan W, Verde G, VanderMolen A, Wagnera A, Xib H, Gelbke C, Beaulieu L, Davin B, Larochellec Y, Lefort T, de Souza R, Yanez R, Viola V, Charity R, Sobotka L 2000 Phys. Rev. Lett. 85 716Google Scholar

    [58]

    Zhang Y, Tian J, Cheng W, Guan F, Huang Y, Li H, Lü L, Wang R, Wang Y, Wu Q, Yi H, Zhang Z, Zhao Y, Duan L, Hu R, Huang M, Jin G, Jin S, Lu C, Ma J, Ma P, Wang J, Yang H, Yang Y, Zhang J, Zhang Y, Zhang Y, Ma C, Qiao C, Tsang M B, Xiao Z 2017 Phys. Rev. C 95 041602

    [59]

    Roca-Maza X, Centelles M, Vinas X, Warda M 2011 Phys. Rev. Lett. 106 252501Google Scholar

    [60]

    Zhang W 2023 Ph. D. Dissertation (New York: Stony Brook University

    [61]

    Donnelly T W, Dubach J, Sick I 1989 Nucl. Phys. A 503 589Google Scholar

    [62]

    PREX Collaboration, Adhikari D, et al. 2021 Phys. Rev. Lett. 126 172502Google Scholar

    [63]

    Reed B T, Fattoyev F J, Horowitz C J, Piekarewicz J 2021 Phys. Rev. Lett. 126 172503Google Scholar

    [64]

    FOPI Collaboration Y Leifels, et al. 1993 Phys. Rev. Lett. 71 963Google Scholar

    [65]

    LAND Collaboration, Blaich T, et al. 1992 Nucl. Instrum. Meth. A 314 136Google Scholar

    [66]

    Russotto P, Wu P, Zoric M, Chartier M, Leifels Y, Lemmon R, Li Q, Lukasik J, Pagano A, Pawlowski P, Trautmann W 2011 Phys. Lett. B 697 471Google Scholar

    [67]

    Cozma M D, Leifels Y, Trautmann W, Li Q, Russotto P 2013 Phys. Rev. C 88 044912Google Scholar

    [68]

    Russotto P, Gannon S, Kupny S, Lasko P, Acosta L, Adamczyk M, Al-Ajlan A, Al-Garawi M, Al-Homaidhi S, Amorini F, Auditore L, Aumann T, Ayyad Y, Basrak Z, Benlliure J, Boisjoli M, Boretzky K, Brzychczyk J, Budzanowski A, Caesar C, Cardella G, Cammarata P, Chajecki Z, Chartier M, Chbihi A, Colonna M, Cozma M D, Czech B, De Filippo E, Di Toro M, Famiano M, Gašparić I, Grassi L, Guazzoni C, Guazzoni P, Heil M, Heilborn L, Introzzi R, Isobe T, Kezzar K, Kiš M, Krasznahorkay A, Kurz N, La Guidara E, Lanzalone G, Le Fèvre A, Leifels Y, Lemmon R C, Li Q F, Lombardo I, Lukasik J, Lynch W G, Marini P, Matthews Z, May L, Minniti T, Mostazo M, Pagano A, Pagano E V, Papa M, Pawlowski P, Pirrone S, Politi G, Porto F, Reviol W, Riccio F, Rizzo F, Rosato E, Rossi D, Santoro S, Sarantites D G, Simon H, Skwirczynska I, Sosin Z, Stuhl L, Trautmann W, Trifirò A, Trimarchi M, Tsang M B, Verde G, Veselsky M, Vigilante M, Wang Y, Wieloch A, Wigg P, Winkelbauer J, Wolter H H, Wu P, Yennello S, Zambon P, Zetta L, Zoric M 2016 Phys. Rev. C 94 034608Google Scholar

    [69]

    Gaitanos T, Di Toro M, Typel S, Baran V, Fuchs C, Greco V, Wolter H H 2004 Nucl. Phys. A 732 24Google Scholar

    [70]

    Li Q, Li Z, Soff S, Bleicher M, Stoecker H 2005 Phys. Rev. C 72 034613Google Scholar

    [71]

    FOPI Collaboration, Reisdorf W, et al. 2007 Nucl. Phys. A 781 459Google Scholar

    [72]

    Xiao Z, Li B A, Chen L W, Yong G C, Zhang M 2009 Phys. Rev. Lett. 102 062502Google Scholar

    [73]

    Feng Z Q, Jin G M 2010 Phys. Lett. B 683 140Google Scholar

    [74]

    Xie W J, Su J, Zhu L, Zhang F S 2013 Phys. Lett. B 718 1510Google Scholar

    [75]

    Xu J, Chen L W, Tsang M B, Wolter H, Zhang Y X, Aichelin J, Colonna M, Cozma D, Danielewicz P, Feng Z Q, Le Fevre A, Gaitanos T, Hartnack C, Kim K, Kim Y, Ko C M, Li B A, Li Q F, Li Z X, Napolitani P, Ono A, Papa M, Song T, Su J, Tian J L, Wang N, Wang Y J, Weil J, Xie W J, Zhang F S, Zhang G Q 2016 Phys. Rev. C 93 044609Google Scholar

    [76]

    Xu J, Wolter H, Colonna M, Cozma M D, Danielewicz P, Ko C M, Ono A, Tsang M B, Zhang Y X, Cheng H G, Ikeno N, Kumar R, Su J, Zheng H, Zhang Z, Chen L W, Feng Z Q, Hartnack C, Le Fèvre A, Li B A, Nara Y, Ohnishi A, Zhang F S 2024 Phys. Rev. C 109 044609Google Scholar

    [77]

    E-0895 Collaboration, Klay J L, et al. 2003 Phys. Rev. C 68 054905Google Scholar

    [78]

    Wolf A, Appenheimer M, Averbeck R, Charbonnier Y, Diaz J, Doppenschmidt A, Hejny V, Hlavac S, Holzmann R, Kugler A, Lohner H, Marin A, Metag V, Novotny R, Ostendorf R, Pleskac R, Schubert A, Schutz Y, Simon R, Stratmann R, Stroher H, Tlusty P, Vogt P, Wagner V, Weiss J, Wilschut H, Wissmann F, Wolf M 1998 Phys. Rev. Lett. 80 5281Google Scholar

    [79]

    Wagner A, Muntz C, Oeschler H, Sturm C T, Barth R, Cieslak M, Debowski M, Grosse E, Koczon P, Mang M, Miskowiec D, Schicker R, Schwab E, Senger P, Beckerle P, Brill D, Shin Y, Strobele H, Walus W, Kohlmeyer B, Puhlhofer F, Speer J, Volkel K 1998 Phys. Lett. B 420 20Google Scholar

    [80]

    HADES Collaboration, Agakishiev G, et al. 2009 Eur. Phys. J. A 41 243Google Scholar

    [81]

    HADES Collaboration, Adamczewski-Musch J, et al. 2020 Eur. Phys. J. A 56 259Google Scholar

    [82]

    Kubo T, Ishihara M, Inabe N, Kumagai H, Tanihata I, Yoshida K, Nakamura T, Okuno H, Shimoura S, Asahi K 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 70 309

    [83]

    Motobayashi T 2010 Nucl. Phys. A 834 707cGoogle Scholar

    [84]

    Kurata-Nishimura M 2017 Proceedings of Science INPC2016 p218

    [85]

    Barney J, Estee J, Lynch W, Isobe T, Jhang G, Kurata-Nishimura M, McIntosh A, Murakami T, Shane R, Tangwancharoen S, Tsang M, Cerizza G, Kaneko M, Lee J, Tsang C, Wang R, Anderson C, Baba H, Chajecki Z, Famiano M, Hodges-Showalter R, Hong B, Kobayashi T, Lasko P, Łukasik J, Nakatsuka N, Olsen R, Otsu H, Pawłowski P, Pelczar K, Powell W, Sakurai H, Santamaria C, Setiawan H, Taketani A, Winkelbauer J, Xiao Z, Yennello S, Yurkon J, Zhang Y 2021 Rev. Sci. Instrum. 92 063302Google Scholar

    [86]

    Lasko P, Adamczyk M, Brzychczyk J, Hirnyk P, Łukasik J, Pawłowski P, Pelczar K, Snoch A, Sochocka A, Sosin Z, Barney J, Cerizza G, Estee J, Isobe T, Jhang G, Kaneko M, Kurata-Nishimura M, Lynch W, Murakami T, Santamaria C, Tsang M, Zhang Y 2017 Nucl. Instrum. Meth. A 856 92Google Scholar

    [87]

    Barney J E 2019 Ph. D. Dissertation (East Lansing: Michigan State University

    [88]

    SπRIT & TEMP Collaboration, Jhang G, et al. 2021 Phys. Lett. B 813 136016Google Scholar

    [89]

    Yong G C 2021 Phys. Rev. C 104 014613Google Scholar

    [90]

    Glendenning N K 1982 Phys. Lett. B 114 392Google Scholar

    [91]

    Millener D J, Dover C B, Gal A 1988 Phys. Rev. C 38 2700Google Scholar

    [92]

    Gal A, Hungerford E V, Millener D J 2016 Rev. Mod. Phys. 88 035004Google Scholar

    [93]

    Schaffner J, Mishustin I N 1996 Phys. Rev. C 53 1416Google Scholar

    [94]

    Schaffner-Bielich J 2010 Nucl. Phys. A 835 279Google Scholar

    [95]

    Yong G C 2023 Phys. Rev. D 108 L091507Google Scholar

    [96]

    Lonardoni D, Lovato A, Gandolfi S, Pederiva F 2015 Phys. Rev. Lett. 114 092301Google Scholar

    [97]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 340 6131

    [98]

    Bombaci I 2017 JPS Conf. Proc. 17 101002

    [99]

    Gerstung D, Kaiser N, Weise W 2020 Eur. Phys. J. A 56 175Google Scholar

    [100]

    Feng Z Q 2021 Eur. Phys. J. A 57 18Google Scholar

    [101]

    Ji Y 2024 EPJ Web Conf. 296 02004Google Scholar

    [102]

    STAR Collaboration, Aboona B, et al. 2023 Phys. Rev. Lett. 130 212301Google Scholar

    [103]

    Oliinychenko D, Shen C, Koch V 2021 Phys. Rev. C 103 034913Google Scholar

    [104]

    Neidig T, Gallmeister K, Greiner C, Bleicher M, Vovchenko V 2022 Phys. Lett. B 827 136891Google Scholar

    [105]

    Sun K J, Wang R, Ko C M, Ma Y G, Shen C 2024 Nat. Commun. 15 1074Google Scholar

    [106]

    Coci G, Gläßel S, Kireyeu V, Aichelin J, Blume C, Bratkovskaya E, Kolesnikov V, Voronyuk V 2023 Phys. Rev. C 108 014902Google Scholar

    [107]

    Bruce R, Alemany Fernandez R, Argyropoulos T, Bartosik H, Bracco C, Cai R, D’ Andrea M, Frasca A, Hermes P, Jowett J, Mirarchi D, Redaelli S, Solfaroli M, Triantafyllou N, Wenninger J 2023 14th International Particle Accelerator Conference (IPAC 2023) Venice, Italy, May 7–12, 2023 pMOPL021

    [108]

    Galatyuk T 2019 Nucl. Phys. A 982 163Google Scholar

    [109]

    Fu W J, Pawlowski J M, Rennecke F 2020 Phys. Rev. D 101 054032Google Scholar

    [110]

    Gunkel P J, Fischer C S 2021 Phys. Rev. D 104 054022Google Scholar

    [111]

    Hippert M, Grefa J, Manning T A, Noronha J, Noronha-Hostler J, Portillo Vazquez I, Ratti C, Rougemont R, Trujillo M 2024 Phys. Rev. D 110 094006

    [112]

    Basar G 2024 Phys. Rev. C 110 015203Google Scholar

    [113]

    Odyniec G 2019 Proceedings of Science CORFU2018 p151

    [114]

    Spiller P, Balss R, Bartolome P, Blaurock J, Blell U, Boine-Frankenheim O, Bozyk L, Chorowski M, Eisel T, Frey M, Giacomini T, Kaether F, Khodzhibagiyan H, Klammes S, Klingbeil H, Koenig H, Kornilov V, Kowina P, Lens D, Meier J, Ondreka D, Petzenhauser I, Plyusnin V, Pongrac I, Pyka N, Raginel V, Rottlaender P, Roux C, Schmidt J, Schwickert M, Sugita K, Szwangruber A, Szwangruber P, Trockel R, Waldt A, Welker H, Wilfert S, Winkler T, Winters D 2020 JINST 15 T12013Google Scholar

    [115]

    Friman B, Hohne C, Knoll J, Leupold S , Randrup J, Rapp R, Senger P 2011 The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments (Berlin: Springer

    [116]

    Kapishin M 2019 Nucl. Phys. A 982 967Google Scholar

    [117]

    Sissakian A N, Kekelidze V D, Sorin A S 2009 Nucl. Phys. A 827 630CGoogle Scholar

    [118]

    Ahn J K, Bak S I, Blumenfeld Y, et al. 2013 Few Body Syst. 54 197Google Scholar

    [119]

    夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军 2016 科学通报 61 467

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Zhao H W, Yant J C, Shi J, Sheng L N, Yang W Q, Mao L J 2016 Science Bulletin 61 467

    [120]

    Yang J, Sun L, Yuan Y 2023 JACoW CYCLOTRONS2022 MOAI01

    [121]

    Zhou X, Yang J 2022 AAPPS Bull. 32 35Google Scholar

    [122]

    Saito T R, Dou W, Drozd V, et al. 2021 Nat. Rev. Phys. 3 803Google Scholar

    [123]

    Mroczek D, Yao N, Zine K, Noronha-Hostler J, Dexheimer V, Haber A, Most E R 2024 arXiv:2404.01658 [astro-ph.HE]

    [124]

    Huang M, Zhuang P 2023 Symmetry 15 541Google Scholar

    [125]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: Phys. Rev. Lett. 96 039901 (2006)]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: Phys. Rev. Lett. 96 039901 (2006)]

    [126]

    STAR Collaboration, Adamczyk L, et al. 2017 Nature 548 62Google Scholar

    [127]

    STAR Collaboration, Abdallah M S, et al. 2023 Nature 614 244Google Scholar

    [128]

    梁作堂, 王群, 马余刚 2023 72 070101Google Scholar

    Liang Z T, Wang Q, Ma Y G 2023 Acta Phys. Sin. 72 070101Google Scholar

    [129]

    尹伊 2023 72 111201Google Scholar

    Yi Y 2023 Acta Phys. Sin. 72 111201Google Scholar

    [130]

    浦实, 黄旭光 2023 72 071202Google Scholar

    Pu S, Huang X G 2023 Acta Phys. Sin. 72 071202Google Scholar

    [131]

    江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威 2023 72 072504Google Scholar

    Jiang F Z, Wu X Y, Yu Q H, Cao S S, Zhang B W 2023 Acta Phys. Sin. 72 072504Google Scholar

  • [1] WU Xiaoxia, LIAO Lingrui, CHENG Rui, KANG Wei, WANG Zhao, SHI Lulin, WANG Guodong, CHEN Yanhong, ZHOU Zexian, CHEN Liangwen, YANG Jie. Aardvark program predicted high-energy density matter induced by intense heavy ion beams at HIAF. Acta Physica Sinica, 2025, 74(9): 094701. doi: 10.7498/aps.74.20241553
    [2] Liu Xun, Fan Yan, Guo Wen-Jun. The Impact of High-Momentum Distribution within the Nucleus on the Production of Bremsstrahlung Photons. Acta Physica Sinica, 2025, 74(13): . doi: 10.7498/aps.74.20250239
    [3] Xie Zhen, Li Jing-Xing, Zheng Hua, Zhang Wen-Chao, Zhu Li-Lin, Liu Xing-Quan, Tan Zhi-Guang, Zhou Dai-Mei, Bonasera Aldo. Midrapidity average transverse momentum of identified charged particles in high-energy heavy-ion collisions. Acta Physica Sinica, 2024, 73(18): 181201. doi: 10.7498/aps.73.20240905
    [4] Liu He, Chu Peng-Cheng. Elliptic flow splitting of charged pions in relativistic heavy-ion collisions. Acta Physica Sinica, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [5] Lin Shu, Tian Jia-Yuan. Medium correction to gravitational form factors. Acta Physica Sinica, 2023, 72(7): 071201. doi: 10.7498/aps.72.20222473
    [6] Sheng Xin-Li, Liang Zuo-Tang, Wang Qun. Global spin alignment of vector mesons in heavy ion collisions. Acta Physica Sinica, 2023, 72(7): 072502. doi: 10.7498/aps.72.20230071
    [7] Sun Xu, Zhou Chen-Sheng, Chen Jin-Hui, Chen Zhen-Yu, Ma Yu-Gang, Tang Ai-Hong, Xu Qing-Hua. Measurements of global polarization of QCD matter in heavy-ion collisions. Acta Physica Sinica, 2023, 72(7): 072401. doi: 10.7498/aps.72.20222452
    [8] Zhu Xi-Rui, Meng Xu-Jun, Tian Ming-Feng. Theoretical study of electronic eqution of state for plasmas with transitional region. Acta Physica Sinica, 2008, 57(7): 4049-4058. doi: 10.7498/aps.57.4049
    [9] Liu Jian-Ye, Hao Huan-Feng, Zuo Wei, Li Xi-Guo. Medium effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, 2008, 57(4): 2136-2140. doi: 10.7498/aps.57.2136
    [10] Jiang Zhi-Jin. The numbers of participants and nucleon-nucleon collisions in high-energy heavy-ion collisions. Acta Physica Sinica, 2007, 56(9): 5191-5195. doi: 10.7498/aps.56.5191
    [11] Bian Bao-An, Zhou Hong-Yu, Zhang Feng-Shou. Symmetry energy and isospin effects of threshold energy of radial flow in heavy ion collisions. Acta Physica Sinica, 2007, 56(3): 1334-1338. doi: 10.7498/aps.56.1334
    [12] Li Qiang, Jiang Zhi-Jin, Xia Hong-Fu. J/ψ anomalous suppression in high-energy heavy-ion collisions. Acta Physica Sinica, 2006, 55(10): 5161-5165. doi: 10.7498/aps.55.5161
    [13] Zhang Fang, Zuo Wei, Yong Gao-Chan. Probing the high density behavior of the symmetry energy by using the neutron-proton differential flow. Acta Physica Sinica, 2006, 55(11): 5769-5773. doi: 10.7498/aps.55.5769
    [14] Liu Jian-Ye, Xing Yong-Zhong, Guo Wen-Jun. Entrance channel effects on the role of isospin-dependent momentum interaction in isospin fractionation in heavy ion collisions. Acta Physica Sinica, 2006, 55(1): 91-97. doi: 10.7498/aps.55.91
    [15] Liu Jian-Ye, Guo Wen-Jun, Xing Yong-Zhong, Lee Xi-Guo, Zuo Wei. Nuclear reaction dynamics induced by halo-nuclei at intermediate energy heavy ion collisions. Acta Physica Sinica, 2006, 55(3): 1068-1076. doi: 10.7498/aps.55.1068
    [16] Yong Gao-Chan, Li Bao-An, Chen Lie-Wen, Zuo Wei. Flipped symmetry potential in heavy-ion collisions. Acta Physica Sinica, 2006, 55(10): 5166-5171. doi: 10.7498/aps.55.5166
    [17] Guo Wen-Jun, Liu Jian-Ye, Xing Yong-Zhong. The isospin effect of momentum-dependent interaction in heavy ion collisions. Acta Physica Sinica, 2005, 54(7): 3082-3086. doi: 10.7498/aps.54.3082
    [18] Xing Yong-Zhong, Liu Jian-Ye, Guo Wen-Jun, Fang Yu-Tian. Dependence of isospin fractionation process on the neutron-proton ratio of a colliding system in intermediate energy heavy-ion collisions. Acta Physica Sinica, 2004, 53(7): 2106-2111. doi: 10.7498/aps.53.2106
    [19] Jiang Zhi-Jin. The study of centrality dependence of rapidity densities of charged-multiplicity. Acta Physica Sinica, 2004, 53(4): 1020-1022. doi: 10.7498/aps.53.1020
    [20] AN ZHI-GANG. THE ACTIVITY EXPANSION FOR THE EQUATION OF STATE OF A PLASMA. Acta Physica Sinica, 1979, 28(5): 140-142. doi: 10.7498/aps.28.140
Metrics
  • Abstract views:  359
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2024
  • Accepted Date:  07 May 2025
  • Available Online:  09 May 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map