Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intermediate/high-energy heavy-ion collisions and nuclear matter equation of state

ZHANG Yapeng SUN Zhiyu YONG Gaochan FENG Zhaoqing

Citation:

Intermediate/high-energy heavy-ion collisions and nuclear matter equation of state

ZHANG Yapeng, SUN Zhiyu, YONG Gaochan, FENG Zhaoqing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The equation of state (EoS) of nuclear matter is a description of the macroscopic properties of nuclear matter under different thermodynamic conditions or external fields, which is critical for understanding theory of the strong interaction—Quantum Chromodynamics (QCD), the nature of nuclei, the dynamics of heavy-ion collisions (HICs), the internal structure of compact stars, the merger of binary neutron stars, and other physical phenomena. Heavy-ion collisions (HICs) are the only method in laboratories to create nuclear matter with extreme conditions such as high temperatures and high densities. HICs at different energy levels offer the possibility to quantitatively study the properties of nuclear matter under diverse thermodynamic conditions. % This paper mainly presents the current research status of the EoS of nuclear matter and introduces the fundamental observables in HICs that are sensitive to the EoS, as well as the typical experiments and results used to explore the EoS. The progress in studying the EoS containing strangeness is also described and its possible research directions in the future also discussed. The status and progress of world-wide heavy-ion accelerators and experimental spectrometers in high-baryon density region are introduced, including China’s large-scale scientific facilities, i.e HIRFL-CSR and HIAF, as well as the CEE experiment. Additionally, the opportunities and challenges for experimental research on the EoS of nuclear matter in China are discussed.
  • 图 1  用温度、重子密度和同位旋不对称度表示的核物质相图. 图片更新自[8]

    Figure 1.  Nuclear matter phase diagram represented by temperature, baryon density and isospin asymmetry. Figure taken from[8]

    图 2  对称核物质和中子核物质状态方程随密度的关系, 图片更新自[29]

    Figure 2.  EoS of isospin symmetric nuclear matter and neutron matter as a function of the density, figure taken and updated from[29].

    图 3  地面重离子碰撞实验和天文观测提取到$ E_\text{sym}(\rho_0) $(上)和$ L_\text{sym}(\rho_0) $(下)的结果. (a)和(b)均取自[24]

    Figure 3.  $ E_\text{sym}(\rho_0) $ (upper panel) and $ L_\text{sym}(\rho_0) $ (lower panel) extracted from terrestrial heavy-ion experiments and astrophysical observations respectively. Panel (a) and Panel (b) both are taken from[24].

    图 4  重离子碰撞中的碰撞参数和反应平面示意图

    Figure 4.  Sketch of impact parameter and reaction plane in Heavy-ion collisions.

    图 5  UrQMD模型在仅考虑强子相情况下, 模拟0.2—12.8 GeV/u的对心Au+Au碰撞中的温度和密度关联图, 实线和虚线分别表示硬和软的状态方程. 图片取自[34]

    Figure 5.  Diagram of temperature and maximum density in central Au+Au collisions at 0.2–12.8 GeV/u simulated by the UrQMD model with hadron phase only. Figure taken from[34].

    图 6  直接流$ v_1 $和快度在$ y_{cm} = 0 $的斜率与碰撞能量的关联图. 图片取自[36]

    Figure 6.  Slope of $ v_1 $ as a function of rapidity at $ y_{cm} = 0 $ of proton versus collision energies. Figure taken from[36].

    图 7  质子椭圆流与碰撞能量的依赖关系. 图片取自[37]

    Figure 7.  Elliptic flow of proton as a function of collision energies, figure taken from[37].

    图 8  STAR实验测量的组分夸克数约化强子集体流与约化横能量的依赖关系. 图片取自[46]

    Figure 8.  Constitute quark number scaled elliptic flow of hadrons as a function of quark number scaled transverse energy measured by the STAR experiment. Figure taken from[46].

    图 9  对称核物质压强随密度变化的实验限制. 图片取自[34]

    Figure 9.  Pressure of the symmetric nuclear matter as a function of density constrained by experimental measurements. Figure taken from[34]

    图 10  KaoS实验测量$ K^+ $介子在Au+Au和Cu+Cu碰撞中产额比随碰撞能量的变化, 来自输运模型IQMD和RQMD的硬EoS和软EoS分别用短线和点线表示. 图片取得自[50]

    Figure 10.  Yield ratio of $ K^+ $ in Au+Au and Cu+Cu collisions as a function of collision energy measured by the KaoS experiment. The hard and soft EoS from the transport models IQMD and RQMD are represented by dashed and dotted lines, respectively. Figure taken from[50].

    图 11  FOPI实验测量0.4、1.0和1.5 GeV/u的Au+Au碰撞中质子和氘核的椭圆流随快度依赖, 基于IQMD模型硬EoS和软EoS理论计算结果分别用虚线和实线表示. 图片取得自[56]

    Figure 11.  Elliptic flow of proton and deuteron as a function of rapidity in Au+Au collisions at 0.4, 1.0, and 1.5 GeV/u mesured by the FOPI experiment, red dashed line and black line represent the IQMD predictions with hard EoS and soft EoS respectively. Figure taken from[56].

    图 12  对称能$ E_{\text{sym}} $与密度依赖关系, 其中不同的点来自不同的实验. 图片取自[34]

    Figure 12.  The symmetric energy $ E_{\text{sym}} $ as a function of nuclear matter density, symbols represent results obtained from different experiments. Figure taken from[34]

    图 13  (左)30 MeV/u的Ar+Au反应中, 轻带电粒子的约化中子 丰度随实验室角度的变化关系, 曲线为理论模型计算结果; (右)轻核约化中子丰度小角度区的下降斜率(红色区域)与理论计算(空心圆圈)的比较. 图片取自[58]

    Figure 13.  (Left) In 30 meV/u Ar+Au reactions, $ Y_{n, ex}/Y_{p, CL} $ as a function of polar angle, curves are theoretical calculations. (Right) Comparison the slope of $ Y_{n, ex}/Y_{p, CL} $ in $ \theta_{lab}<100^{\circ} $ from experiment (red band) and theoretical predictions (open circles). Figure taken from[58]

    图 14  PREX实验装置示意图. 图片取自[60]

    Figure 14.  Schematic draw of PREX-II experiment, see detail descriptions in text. Figure taken from[60]

    图 15  不同的实验和理论给出的对称能参数$ L_\text{sym}-J_\text{sym} $的限制, 黑色空心圈为PREX-II测量结果, 红色实线和虚线表示其它实验中提取的$ L_\text{sym} = 58.9\pm16 $ MeV的中心值和误差. 图片更新自[63]

    Figure 15.  Constraints on symmetry energy parameters $ L_\text{sym}-J_\text{sym} $, open circle presents the results of PREX-II experiment, solid and dashed horizontal lines represent the central value and error of $ L_\text{sym} = 58.9\pm16 $ MeV respectively. Figure was taken and updated from[63].

    图 16  FOPI-LAND实验探测器布局图. 图片取自[64]

    Figure 16.  Detector layout of the FOPI-LAND experiment. Figure taken from[64]

    图 17  ASY-EOS实验探测器布局图, 图片取自[68]

    Figure 17.  ASY-EOS experiment detector layout, figure were taken from[68]

    图 18  400 MeV/u的Au+Au半中心碰撞(b<7.5 fm)中ASY-EOS实验测量到的中子和带电粒子椭圆流的比值$ v_2^n/v_2^{ch} $和横动量的关联(黑色方框), 三角和圆分别代表UrQMD在硬($ \gamma = 1.5 $)和软($ \gamma = 0.5 $)对称能时计算结果, 实线是对理论计算结果做线性延拓, 得到与实验数据最佳符合时$ \gamma = 0.75\pm0.1 $, 图片取自[68]

    Figure 18.  Elliptic flow ratio of neutron and charged particle as a function of transverse momentum, in semi-central Au+Au collisions (b<7.5 fm) at 400 MeV/u measured by ASY-EoS experiment. Triangles and squares are UrQMD predictions with hard ($ \gamma = 1.5 $) and soft ($ \gamma = 0.5 $) symmetry energy, solid line is the linear interpolation of predictions which can describe the data best, correspond to $ \gamma = 0.75\pm0.1 $. Figure taken from[68]

    图 19  FOPI实验测量400 MeV/u的核核中心碰撞中$ \pi^-/\pi^+ $产额比与碰撞系统N/Z的依赖(空心菱形)和IBUU04模型在x = 1.0(软EoS)、0.5(中等EoS)和0.(硬EoS)模拟结果比较, 图片取自[72]

    Figure 19.  $ \pi^-/\pi^+ $ yield ratio measured the FOPI experiment in central nucleus-nucleus collisions at 400 MeV/u as a function of N/Z ratio of the colliding systems (open diamonds), and compared simulation results from the IBUU04 model for x = 1.0 (soft EoS), 0.5 (medium EoS), and 0 (hard EoS). Figure taken from[72]

    图 20  HADES实验(方框)、FOPI实验(圆点)、Stream chamber(三角)和E895(五角星)测量到的约化π多重数与$ <\text{A}_\text{part}> $的关系. 图片取自[81]

    Figure 20.  π multiplicity measured by HADES(squares), FOPI(filled circles), Stream chamber (triangles) and E895 experiment (star) as a function of $ <\text{A}_\text{part}> $. Figure taken from[81]

    图 21  SπRIT实验装置图, 图片取自[84]

    Figure 21.  SπRIT experiment setup. Figure taken from[84]

    图 22  SπRIT实验中Tyoto-Array和前角区触发探测器 (KATANA)实物照片, 图片取自[87]

    Figure 22.  Photo of the Tyoto-Array and the KATANA detector of the SπRIT experiment. Figure taken from[87]

    图 23  (左)SπRIT实验测量270 MeV/u时, 不同Sn+Sn碰撞系统$ \pi^-/\pi^+ $产额比; (右)系统132Sn+124Sn和108Sn+112Sn系统双$ \pi^-/\pi^+ $产额比; 7个输运模型计算结果用不同颜色标记. 图片取自[88]

    Figure 23.  (Left) $ \pi^-/\pi^+ $ yield ratio measured by the SπRIT experiment in Sn+Sn collisions with different N/Z ratio; (Right) Double $ \pi^-/\pi^+ $ yield ratio in 132Sn+124Sn and 108Sn+112Sn, results from 7 transport models are marked by bands with different color. Figure taken from[88]

    图 24  中子星质量(M)和半径(R)的关系, 其中绿区域为核物质, 红色区域代表在核物质基础上再加入$ {\Lambda}N $相互作用后中子星M-R关系, 其中考虑了两种都可以描述超核数据的YNN相互作用. 图片取自[96]

    Figure 24.  The relationship between the mass (M) and radius (R) of a neutron star, where the green region represents pure nuclear matter, and the red region shows the M-R relationship of neutron stars after incorporating ΛN interactions on top of the nuclear matter, considering two types of YNN interactions that can both describe hyper-nuclear data. Figure taken from[96]

    图 25  对称核物质(左)和中子核物质(右)中, 超子-核子(YN)和超子-核子-核子(Y NN) 三体相互作用随密度的函数关系. 图片取自[99]

    Figure 25.  In symmetric nuclear matter (left) and pure neutron matter (right), the hyperon-nucleon (YN) and three-body hyperon-nucleon-nucleon (YNN) interactions as a function of the density. Figure taken from[99]

    图 26  超氚$ ^3_{\Lambda}\text{H} $产额随重离子碰撞能量的变化. 图片取自[101]

    Figure 26.  Production yields of hyper-triton $ ^3_{\Lambda}\text{H} $ as a function of colliding energies in HICs. Figure taken from[101]

    图 27  3 GeV Au+Au碰撞5—40%碰撞中心度中$ ^3_{\Lambda}\text{H} $和$ ^4_{\Lambda}\text{H} $直接流与快度依赖关系. 图片取自[102]

    Figure 27.  Directed flow of $ ^3_{\Lambda}\text{H} $ and $ ^4_{\Lambda}\text{H} $ as a function of the rapidity at 3 GeV Au+Au collisions in 5–40% centrality. Figure taken from[102]

    图 28  从能量为$ \sqrt{s_{NN}} = 2—5020 $ GeV重离子碰撞数据中提取到的化学冻出温度(T)和重子化学势($ \mu_B $). 图片取自[108]

    Figure 28.  Chemical freeze-out temperature (T) and baryon chemical potential ($ \mu_B $) extracted from HICs with colliding energy $ \sqrt{s_{NN}} = 2-5020 $ GeV. Figure taken from[108]

    图 29  FAIR装置上的CBM实验和HADES实验的探测器布局示意图. 图片取自[40]

    Figure 29.  Schematic diagram of the detector layout of the CBM experiment and the HADES experiment at the FAIR facility. Figure taken from[40]

    图 30  NICA装置上的MPD实验探测器布局示意图. 图片取自[41]

    Figure 30.  Schematic diagram of the detector layout of the MPD experiment at the NICA facility. Figure taken from[41]

    图 31  韩国RAON装置上的LAMPS实验探测器布局示意图. 图片取自[45]

    Figure 31.  Schematic diagram of the LAMPS experiment at the RAON facility. Figure taken from[45].

    图 32  HIRFL-CSR加速器布局示意图. 图片取自[120]

    Figure 32.  Schematic diagram of the HIRFL-CSR facility. Figure taken from[120]

    图 33  低温高密核物质测量谱仪探测器布局示意图

    Figure 33.  Schematic diagram of the CEE experiment.

    图 34  强流重离子加速器装置(HIAF)布局示意图. 图片取自[122]

    Figure 34.  Schematic diagram of the HIAF facility. Figure taken from[122].

    表 1  世界上重离子加速器与其典型实验, 基于文献[108]数据扩充

    Table 1.  Heavy-ion accelerator in the world and its typical Experiments, expanded based on data listed in[108]

    Facility $ \sqrt{s_{NN}} $ (GeV) Period Experiments
    Bevalac 2.0-2.7 1975-1993 EOS/et al.
    SIS18 2.4-2.7 1990-now FOPI/Hades/et al.
    FRIB 1.9-2.1 >2025 AT-TPC$ ^* $
    RIBF 1.9-2.1 1986-now SπRIT
    RAON 1.9-2.0 >2030 LAMPS
    HIRFL 2.0-2.4 2008-now CEE/ETE
    Nuclotron 2.0-3.5 2000-now BM@N
    JPARC-HI 2.0-6.2 >2030 DHS
    SIS100 2.7-5.0 >2029 CBM/Hades
    NICA 2.7-11.0 >2025 BM@N/MPD
    RHIC 3.0-200 2000-2025 STAR
    SPS 4.5-17.3 1981-now NA49/NA61/SHINE
    AGS 2.7-4.8 2022-now E895/et al.
    HIAF 2.2-3.5 >2027 CEE+/CHNS
    LHC 2760 2018-now ALICE
    LHC 72 >2027 LHCb/ALICE-FT
    DownLoad: CSV
    Baidu
  • [1]

    Wilson K G 1974 Phys. Rev. D 102445

    [2]

    Ishii N, Aoki S, Hatsuda T 2007 Phys. Rev. Lett. 99022001

    [3]

    Inoue T 2021 Few Body Syst. 62106

    [4]

    Nemura H 2011 Few Body Syst. 50105

    [5]

    Pásztor A 2024 EPJ Web Conf. 29601009

    [6]

    Weinberg S 1979 Physica A 96327

    [7]

    Weinberg S 1991 Nucl. Phys. B 3633

    [8]

    Drischler C, Holt J W, Wellenhofer C 2021 Ann. Rev. Nucl. Part. Sci. 71403

    [9]

    Machleidt R, Sammarruca F 2016 Phys. Scripta 91083007

    [10]

    Drischler C, Hebeler K, Schwenk A 2016 Phys. Rev. C 93054314

    [11]

    Lee D 2009 Prog. Part. Nucl. Phys. 63117

    [12]

    Elhatisari S, Bovermann L, Ma Y, et al 2024 Nature 63059

    [13]

    MA Y Z, Lv B N, Li N, Wang Q 2024 Nucl. Phys. Rev. 41172(马远卓,吕炳楠,李宁,王倩2024原子核物理评论41172)

    [14]

    Luo X, Shi S, Xu N, Zhang Y 2020 Particles 3278

    [15]

    Borsanyi S, Fodor Z, Guenther J N, Kara R, Katz S D, Parotto P, Pasztor A, Ratti C, Szabo K K 2020 Phys. Rev. Lett. 125052001

    [16]

    Andronic A, Braun-Munzinger P, Redlich K, Stachel J 2018 Nature 561321

    [17]

    McLerran L, Pisarski R D 2007 Nucl. Phys. A 79683

    [18]

    Weber F 2001 J. Phys. G 27465

    [19]

    Demorest P, Pennucci T, Ransom S, Roberts M, Hessels J 2010 Nature 4671081

    [20]

    Romani R W, Kandel D, Filippenko A V, Brink T G, Zheng W 2022 Astrophys. J. Lett. 934 L17

    [21]

    Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Harding A K, Ho W C G, Lattimer J M, Ludlam R M, Mahmoodifar S, Morsink S M, Ray P S, Strohmayer T E, Wood K S, Enoto T, Foster R, Okajima T, Prigozhin G, Soong Y 2019 Astrophys. J. Lett. 887 L24

    [22]

    Miller M C, Lamb F K, Dittmann A J, Bogdanov S, Arzoumanian Z, Gendreau K C, Guillot S, Ho W C G, Lattimer J M, Loewenstein M, Morsink S M, Ray P S, Wolff M T, Baker C L, Cazeau T, Manthripragada S, Markwardt C B, Okajima T, Pollard S, Cognard I, Cromartie H T, Fonseca E, Guillemot L, Kerr M, Parthasarathy A, Pennucci T T, Ransom S, Stairs I 2021 Astrophys. J. Lett.918 L28

    [23]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2017 Phys. Rev. Lett. 119161101

    [24]

    Li B A, Krastev P G, Wen D H, Zhang N B 2019 Eur. Phys. J. A 55117

    [25]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2018 Phys. Rev. Lett. 121161101

    [26]

    Alvarez-Castillo D E, Blaschke D B, Grunfeld A G, Pagura V P 2019 Phys. Rev. D 99063010

    [27]

    Li B A, Cai B J, Xie W J, Zhang N B 2021 Universe 7182

    [28]

    HADES Collaboration, Adamczewski-Musch J, et al. 2019 Nature Phys. 151040

    [29]

    Fuchs C, Wolter H H 2006 Eur. Phys. J. A 305

    [30]

    Garg U, Colò G 2018 Prog. Part. Nucl. Phys. 10155

    [31]

    Margueron J, Hoffmann Casali R, Gulminelli F 2018 Phys. Rev. C 97025805

    [32]

    Li B A, Cai B J, Chen L W, Xie W J, Xu J, Zhang N B 2022 Nuovo Cim. C 4554

    [33]

    Bleicher M, Zabrodin E, Spieles C, Bass S, Ernst C, Soff S, Bravina L, Belkacem M, Weber H, Stöcker H, Greiner W 1999 J. Phys. G 251859

    [34]

    Sorensen A, Agarwal K, Brown K W, Chajęcki Z, Danielewicz P, Drischler C, Gandolfi S, Holt J W, Kaminski M, Ko C M, Kumar R, Li B A, Lynch W G, McIntosh A B, Newton W G, Pratt S, Savchuk O, Stefaniak M, Tews I, Tsang M B, Vogt R, Wolter H, Zbroszczyk H, Abbasi N, Aichelin J, Andronic A, Bass S A, Becattini F, Blaschke D, Bleicher M, Blume C, Bratkovskaya E, Brown B A, Brown D A, Camaiani A, Casini G, Chatziioannou K, Chbihi A, Colonna M, Cozma M D, Dexheimer V, Dong X, Dore T, Du L, Dueñas J A, Elfner H, Florkowski W, Fujimoto Y, Furnstahl R J, Gade A, Galatyuk T, Gale C, Geurts F, Gramegna F, Grozdanov S, Hagel K, Harris S P, Haxton W, Heinz U, Heller M P, Hen O, Hergert H, Herrmann N, Huang H Z, Huang X G, Ikeno N, Inghirami G, Jankowski J, Jia J, Jiménez J C, Kapusta J, Kardan B, Karpenko I, Keane D, Kharzeev D, Kugler A, Le Fèvre A, Lee D, Liu H, Lisa M A, Llope W J, Lombardo I, Lorenz M, Marchi T, McLerran L, Mosel U, Motornenko A, Müller B, Napolitani P, Natowitz J B, Nazarewicz W, Noronha J, Noronha-Hostler J, Odyniec G, Papakonstantinou P, Paulínyová Z, Piekarewicz J, Pisarski R D, Plumberg C, Prakash M, Randrup J, Ratti C, Rau P, Reddy S, Schmidt H R, Russotto P, Ryblewski R, Schäfer A, Schenke B, Sen S, Senger P, Seto R, Shen C, Sherrill B, Singh M, Skokov V, Spaliński M, Steinheimer J, Stephanov M, Stroth J, Sturm C, Sun K J, Tang A, Torrieri G,Trautmann W, Verde G, Vovchenko V, Wada R, Wang F, Wang G, Werner K, Xu N, Xu Z, Yee H U, Yennello S, Yin Y 2024 Prog. Part. Nucl. Phys. 134104080

    [35]

    Voloshin S, Zhang Y 1996 Z. Phys. C 70665

    [36]

    HADES Collaboration, Adamczewski-Musch J, et al. 2023 Eur. Phys. J. A 5980

    [37]

    ALICE Collaboration, Aamodt K, et al. 2010 Phys. Rev. Lett. 105252302

    [38]

    Herrmann N, Wessels J P, Wienold T 1999 Ann. Rev. Nucl. Part. Sci. 49581

    [39]

    Danielewicz P, Lacey R, Lynch W G 2002 Science 2981592

    [40]

    Herrmann N 2022 EPJ Web Conf. 25909001

    [41]

    MPD Collaboration, Abgaryan V, et al. 2022 Eur. Phys. J. A 58140

    [42]

    Guo D, He X, Li P, Qin Z, Hu C, Wang B, Zhou Y, Zheng K, Zhang Y, Wei X, Yang H, Hu D, Shao M, Duan L, Yu Y, Sun Z, Wang Y, Li Q, Xiao Z 2024 Eur. Phys. J. A 6036

    [43]

    Brown B A, Gade A, Stroberg S R, Escher J, Fossez K, Giuliani P, Hoffman C R, Nazarewicz W, Seng C Y, Sorensen A, Vassh N, Bazin D, Brown K W, Capri M A, Crawford H, Danielewic P, Drischler C, Garcia Ruiz R F, Godbey K, Grzywacz R, Hlophe L, Holt J W, Iwasaki H, Lee D, Lenzi S M, Liddick S, Lubna R, Macchiavelli A O, Martinez Pinedo G, McCoy A, Mercenne A, Minamisono K, Monteagudo B, Navratil P, Ringle R, Sargsyan G, Schatz H, Spieker M C, Volya A, Zegers R G, Zelevinsky V, Zhang X 2024

    [44]

    SπRIT Collaboration Shane R, et al. 2015 Nucl. Instrum. Meth. A 784513

    [45]

    Hong B, Ahn D, Ahn J, Bae J, Bae Y, Bok J, Choi S, Do S, Heo C, Huh J, Hwang J, Jang Y, Kang B, Kim A, Kim B, Kim C, Kim E J, Kim G, Kim G, Kim H, Kim J, Kim J, Kim S, Kim Y, Kim Y, Kim Y, Kim Y, Kweon M, Lee C, Lee H, Lee H, Lee H, Lee J, Lee J, Lee J W, Lee J, Lee S, Lee S, Lim S, Moon D, Nam S, Park J, Park J, Seo J, Yang H 2023 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 541260

    [46]

    STAR Collaboration, Abdallah M S, et al. 2022 Phys. Lett. B 827137003

    [47]

    Li B A 2002 Phys. Rev. Lett. 88192701

    [48]

    Chen L W, Ko C M, Li B A 2003 Nucl. Phys. A 729809

    [49]

    Yong G C, Li B A, Xiao Z G, Lin Z W 2022 Phys. Rev. C 106024902

    [50]

    Hartnack C, Oeschler H, Leifels Y, Bratkovskaya E L, Aichelin J 2012 Phys. Rept. 510119

    [51]

    Gustafsson H A, Gutbrod H H, Kolb B, Löhner H, Ludewigt B, Poskanzer A M, Renner T, Riedesel H, Ritter H G, Warwick A, Weik F, Wieman H 1984 Phys. Rev. Lett. 521590

    [52]

    EOS Colllaboration, Partlan M D, et al. 1995 Phys. Rev. Lett. 752100

    [53]

    E895 Collaboration, Liu H, et al. 2000 Phys. Rev. Lett. 845488

    [54]

    E877 Collaboration, Barrette J, et al. 1997 Phys. Rev. C 563254

    [55]

    FOPI Collaboration, Gobbi A, et al. 1993 Nucl. Instrum. Meth. A 324156

    [56]

    FOPI Collaboration, Reisdorf W, et al. 2012 Nucl. Phys. A 8761

    [57]

    Xu H, Tsang M, Liu T, Liu X, Lynch W, Tan W, Verde G, VanderMolen A, Wagnera A, Xib H, Gelbke C, Beaulieu L, Davin B, Larochellec Y, Lefort T, de Souza R, Yanez R, Viola V, Charity R, Sobotka L 2000 Phys. Rev. Lett. 85716

    [58]

    Zhang Y, Tian J, Cheng W, Guan F, Huang Y, Li H, Lü L, Wang R, Wang Y, Wu Q, Yi H, Zhang Z, Zhao Y, Duan L, Hu R, Huang M, Jin G, Jin S, Lu C, Ma J, Ma P, Wang J, Yang H, Yang Y, Zhang J, Zhang Y, Zhang Y, Ma C, Qiao C, Tsang M B, Xiao Z 2017 Phys. Rev. C 95041602

    [59]

    Roca-Maza X, Centelles M, Vinas X, Warda M 2011 Phys. Rev. Lett. 106252501

    [60]

    Zhang W 2023 Phd thesis, Stony Brook University

    [61]

    Donnelly T W, Dubach J, Sick I 1989 Nucl. Phys. A 503589

    [62]

    PREX Collaboration, Adhikari D, et al. 2021 Phys. Rev. Lett. 126172502

    [63]

    Reed B T, Fattoyev F J, Horowitz C J, Piekarewicz J 2021 Phys. Rev. Lett. 126172503

    [64]

    FOPI Collaboration Y Leifels, et al. 1993 Phys. Rev. Lett. 71963

    [65]

    LAND Collaboration, Blaich T, et al. 1992 Nucl. Instrum. Meth. A 314136

    [66]

    Russotto P, Wu P, Zoric M, Chartier M, Leifels Y, Lemmon R, Li Q, Lukasik J, Pagano A, Pawlowski P, Trautmann W 2011 Phys. Lett. B 697471

    [67]

    Cozma M D, Leifels Y, Trautmann W, Li Q, Russotto P 2013 Phys. Rev. C 88044912

    [68]

    Russotto P, Gannon S, Kupny S, Lasko P, Acosta L, Adamczyk M, Al-Ajlan A, Al-Garawi M, Al-Homaidhi S, Amorini F, Auditore L, Aumann T, Ayyad Y, Basrak Z, Benlliure J, Boisjoli M, Boretzky K, Brzychczyk J, Budzanowski A, Caesar C, Cardella G, Cammarata P, Chajecki Z, Chartier M, Chbihi A, Colonna M, Cozma M D, Czech B, De Filippo E, Di Toro M, Famiano M, Gašparić I, Grassi L, Guazzoni C, Guazzoni P, Heil M, Heilborn L, Introzzi R, Isobe T, Kezzar K, Kiš M, Krasznahorkay A, Kurz N, La Guidara E, Lanzalone G, Le Fèvre A, Leifels Y, Lemmon R C, Li Q F, Lombardo I, Lukasik J, Lynch W G, Marini P, Matthews Z, May L, Minniti T, Mostazo M, Pagano A, Pagano E V, Papa M, Pawlowski P, Pirrone S, Politi G, Porto F, Reviol W, Riccio F, Rizzo F, Rosato E, Rossi D, Santoro S, Sarantites D G, Simon H, Skwirczynska I, Sosin Z, Stuhl L, Trautmann W, Trifirò A, Trimarchi M, Tsang M B, Verde G, Veselsky M, Vigilante M, Wang Y, Wieloch A, Wigg P, Winkelbauer J, Wolter H H, Wu P, Yennello S, Zambon P, Zetta L, Zoric M 2016 Phys. Rev. C 94034608

    [69]

    Gaitanos T, Di Toro M, Typel S, Baran V, Fuchs C, Greco V, Wolter H H 2004 Nucl. Phys. A 73224

    [70]

    Li Q, Li Z, Soff S, Bleicher M, Stoecker H 2005 Phys. Rev. C 72034613

    [71]

    FOPI Collaboration, Reisdorf W, et al. 2007 Nucl. Phys. A 781459

    [72]

    Xiao Z, Li B A, Chen L W, Yong G C, Zhang M 2009 Phys. Rev. Lett. 102062502

    [73]

    Feng Z Q, Jin G M 2010 Phys. Lett. B 683140

    [74]

    Xie W J, Su J, Zhu L, Zhang F S 2013 Phys. Lett. B 7181510

    [75]

    Xu J, Chen L W, Tsang M B, Wolter H, Zhang Y X, Aichelin J, Colonna M, Cozma D, Danielewicz P, Feng Z Q, Le Fevre A, Gaitanos T, Hartnack C, Kim K, Kim Y, Ko C M, Li B A, Li Q F, Li Z X, Napolitani P, Ono A, Papa M, Song T, Su J, Tian J L, Wang N, Wang Y J, Weil J, Xie W J, Zhang F S, Zhang G Q 2016 Phys. Rev. C 93044609

    [76]

    Xu J, Wolter H, Colonna M, Cozma M D, Danielewicz P, Ko C M, Ono A, Tsang M B, Zhang Y X, Cheng H G, Ikeno N, Kumar R, Su J, Zheng H, Zhang Z, Chen L W, Feng Z Q, Hartnack C, Le Fèvre A, Li B A, Nara Y, Ohnishi A, Zhang F S 2024 Phys. Rev. C 109044609

    [77]

    E-0895 Collaboration, Klay J L, et al. 2003 Phys. Rev. C 68054905

    [78]

    Wolf A, Appenheimer M, Averbeck R, Charbonnier Y, Diaz J, Doppenschmidt A, Hejny V, Hlavac S, Holzmann R, Kugler A, Lohner H, Marin A, Metag V, Novotny R, Ostendorf R, Pleskac R, Schubert A, Schutz Y, Simon R, Stratmann R, Stroher H, Tlusty P, Vogt P, Wagner V, Weiss J, Wilschut H, Wissmann F, Wolf M 1998 Phys. Rev. Lett. 805281

    [79]

    Wagner A, Muntz C, Oeschler H, Sturm C T, Barth R, Cieslak M, Debowski M, Grosse E, Koczon P, Mang M, Miskowiec D, Schicker R, Schwab E, Senger P, Beckerle P, Brill D, Shin Y, Strobele H, Walus W, Kohlmeyer B, Puhlhofer F, Speer J, Volkel K 1998 Phys. Lett. B 42020

    [80]

    HADES Collaboration, Agakishiev G, et al. 2009 Eur. Phys. J. A 41243

    [81]

    HADES Collaboration, Adamczewski-Musch J, et al. 2020 Eur. Phys. J. A 56259

    [82]

    Kubo T, Ishihara M, Inabe N, Kumagai H, Tanihata I, Yoshida K, Nakamura T, Okuno H, Shimoura S, Asahi K 1992 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 70309

    [83]

    Motobayashi T 2010 Nucl. Phys. A 834707c

    [84]

    Kurata-Nishimura M 2017 PoS INPC2016218

    [85]

    Barney J, Estee J, Lynch W, Isobe T, Jhang G, Kurata-Nishimura M, McIntosh A, Murakami T, Shane R, Tangwancharoen S, Tsang M, Cerizza G, Kaneko M, Lee J, Tsang C, Wang R, Anderson C, Baba H, Chajecki Z, Famiano M, Hodges-Showalter R, Hong B, Kobayashi T, Lasko P, Łukasik J, Nakatsuka N, Olsen R, Otsu H, Pawłowski P, Pelczar K, Powell W, Sakurai H, Santamaria C, Setiawan H, Taketani A, Winkelbauer J, Xiao Z, Yennello S, Yurkon J, Zhang Y 2021 Rev. Sci. Instrum. 92063302

    [86]

    Lasko P, Adamczyk M, Brzychczyk J, Hirnyk P, Łukasik J, Pawłowski P, Pelczar K, Snoch A, Sochocka A, Sosin Z, Barney J, Cerizza G, Estee J, Isobe T, Jhang G, Kaneko M, Kurata-Nishimura M, Lynch W, Murakami T, Santamaria C, Tsang M, Zhang Y 2017 Nucl. Instrum. Meth. A 85692

    [87]

    Barney J E 2019 Phd thesis, Michigan State University

    [88]

    SπRIT & TEMP Collaboration, Jhang G, et al. 2021 Phys. Lett. B 813136016

    [89]

    Yong G C 2021 Phys. Rev. C 104014613

    [90]

    Glendenning N K 1982 Phys. Lett. B 114392

    [91]

    Millener D J, Dover C B, Gal A 1988 Phys. Rev. C 382700

    [92]

    Gal A, Hungerford E V, Millener D J 2016 Rev. Mod. Phys. 88035004

    [93]

    Schaffner J, Mishustin I N 1996 Phys. Rev. C 531416

    [94]

    Schaffner-Bielich J 2010 Nucl. Phys. A 835279

    [95]

    Yong G C 2023 Phys. Rev. D 108 L091507

    [96]

    Lonardoni D, Lovato A, Gandolfi S, Pederiva F 2015 Phys. Rev. Lett. 114092301

    [97]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 3406131

    [98]

    Bombaci I 2017 JPS Conf. Proc. 17101002

    [99]

    Gerstung D, Kaiser N, Weise W 2020 Eur. Phys. J. A 56175

    [100]

    Feng Z Q 2021 Eur. Phys. J. A 5718

    [101]

    Ji Y 2024 EPJ Web Conf. 29602004

    [102]

    STAR Collaboration, Aboona B, et al. 2023 Phys. Rev. Lett. 130212301

    [103]

    Oliinychenko D, Shen C, Koch V 2021 Phys. Rev. C 103034913

    [104]

    Neidig T, Gallmeister K, Greiner C, Bleicher M, Vovchenko V 2022 Phys. Lett. B 827136891

    [105]

    Sun K J, Wang R, Ko C M, Ma Y G, Shen C 2024 Nature Commun. 151074

    [106]

    Coci G, Gläßel S, Kireyeu V, Aichelin J, Blume C, Bratkovskaya E, Kolesnikov V, Voronyuk V 2023 Phys. Rev. C 108014902

    [107]

    Bruce R, Alemany Fernandez R, Argyropoulos T, Bartosik H, Bracco C, Cai R, D’ Andrea M, Frasca A, Hermes P, Jowett J, Mirarchi D, Redaelli S, Solfaroli M, Triantafyllou N, Wenninger J 2023 JACoW IPAC2023 MOPL021

    [108]

    Galatyuk T 2019 Nucl. Phys. A 982163

    [109]

    Fu W j, Pawlowski J M, Rennecke F 2020 Phys. Rev. D 101054032

    [110]

    Gunkel P J, Fischer C S 2021 Phys. Rev. D 104054022

    [111]

    Hippert M, Grefa J, Manning T A, Noronha J, Noronha-Hostler J, Portillo Vazquez I, Ratti C, Rougemont R, Trujillo M 2023

    [112]

    Basar G 2024 Phys. Rev. C 110015203

    [113]

    Odyniec G 2019 PoS CORFU2018151

    [114]

    Spiller P, Balss R, Bartolome P, Blaurock J, Blell U, Boine-Frankenheim O, Bozyk L, Chorowski M, Eisel T, Frey M, Giacomini T, Kaether F, Khodzhibagiyan H, Klammes S, Klingbeil H, Koenig H, Kornilov V, Kowina P, Lens D, Meier J, Ondreka D, Petzenhauser I, Plyusnin V, Pongrac I, Pyka N, Raginel V, Rottlaender P, Roux C, Schmidt J, Schwickert M, Sugita K, Szwangruber A, Szwangruber P, Trockel R, Waldt A, Welker H, Wilfert S, Winkler T, Winters D 2020 JINST 15 T12013

    [115]

    Friman B, et al 2011 Lect. Notes Phys. 814

    [116]

    Kapishin M 2019 Nucl. Phys. A 982967

    [117]

    Sissakian A N, Kekelidze V D, Sorin A S 2009 Nucl. Phys. A 827630C

    [118]

    Ahn J K, Bak S I, Blumenfeld Y, Chai J S, Cheon B G, Cheoun M K, Cho D, Cho Y S, Choi B H,Choi C I, Choi E M, Choi H J, Choi M S, Choi S, Choi T K, Choi Y S, Chung K H, Ha E J, Ha J H, Hahn I S, Han J M, Han J M, Hong B, Hong S W, Hong W, Hwang S H, Hyun C H, Jang D Y, Jang J, Jeon D O, Jeong D, Jeong S C, Jhang G, Joo E, Kadi Y, Kang B H, Kang H S, Kim A, Kim D Y, Kim D L, Kim D U, Kim E J, Kim G D, Kim H C, Kim I G, Kim J T, Kim J W, Kim J K, Kim S H, Kim S H, Kim S H, Kim W, Kim Y K, Ko S K, Kwon M, Kwon Y K, Lee B Y, Lee B N, Lee C H, Lee C W, Lee C S, Lee K S, Lee H J, Lee H S, Lee H S, Lee J H, Lee K O, Lee K S, Lee S D, Lee S K, Lee S H, Lee Y S, Lee Y O, Lee Y Y, Manchanda V K, Moon C B, Nam S I, Namkung W, Nolen J A, Oh B H, Oh J H, Oh Y, Park B Y, Park J A, Park J Y, Park K H, Park S H, Park T S, Park W Y, Ryu C Y, Ryu M S, Ryu S Y, Sakai H, Seo H J, Shin J W, Shin S W, Sigg P, Sim K S, So W Y, Song H S, Song T Y, Suh B J, Tenreiro C, Tong Z, Tribble R E, Woo H J, Yano Y, Yang H R, Yang Y K, Yeon Y H, Yi W J, Yu B G, Yu D H, Yoo I K, Yu S Y, Yun C C 2013 Few Body Syst. 54197

    [119]

    Hong B 2024 Private Communication

    [120]

    XIA J W, ZHAN W L, WEI B W, YUAN Y J, ZHAO H W, YANG J C, SHI J, SHENG L N, YANG W Q, MAO L J 2016 Science Bulletin 61467(夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军2016科学通报61467)

    [121]

    Yang J, Sun L, Yuan Y 2023 JACoW CYCLOTRONS2022 MOAI01

    [122]

    Zhou X, Yang J 2022 AAPPS Bull. 3235

    [123]

    Saito T R, Dou W, Drozd V, Ekawa H, Escrig S, He Y, Kalantar-Nayestanaki N, Kasagi A, Ka- vatsyuk M, Liu E, Ma Y, Minami S, Muneem A, Nakagawa M, Nakazawa K, Rappold C, Saito N, Scheidenberger C, Taki M, Tanaka Y K, Yoshida J, Yoshimoto M, Wang H, Zhou X 2021 Nature Rev. Phys. 3803

    [124]

    Mroczek D, Yao N, Zine K, Noronha-Hostler J, Dexheimer V, Haber A, Most E R 2024

    [125]

    Huang M, Zhuang P 2023 Symmetry 15541

    [126]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94102301. [Erratum: Phys.Rev.Lett. 96, 039901(2006)]

    [127]

    STAR Collaboration, Adamczyk L, et al. 2017 Nature 54862

    [128]

    STAR Collaboration, Abdallah M S, et al. 2023 Nature 614244

    [129]

    Liang Z T, Wang Q, Ma Y G 2023 Acta Phys. Sin. 72070101(梁作堂,王群,马余刚202372070101)

    [130]

    Yi Y 2023 Acta Phys. Sin. 72111201(尹伊2023 72111201)

    [131]

    Pu S, Huang X G 2023 Acta Phys. Sin. 72071202(浦实,黄旭光2023 72071202)

    [132]

    Jiang F Z, Wu X Y, Yu Q H, Cao S S, Zhang B W 2023 Acta Phys. Sin. 72072504(江泽方,吴祥宇,余华清,曹杉杉,张本威2023 72072504)

  • [1] WU Xiaoxia, LIAO Lingrui, CHENG Rui, KANG Wei, WANG Zhao, SHI Lulin, WANG Guodong, CHEN Yanhong, ZHOU Zexian, CHEN Liangwen, YANG Jie. Aardvark program predicted high-energy density matter induced by intense heavy ion beams at HIAF. Acta Physica Sinica, doi: 10.7498/aps.74.20241553
    [2] Liu Xun, Fan Yan, Guo Wen-Jun. The Impact of High-Momentum Distribution within the Nucleus on the Production of Bremsstrahlung Photons. Acta Physica Sinica, doi: 10.7498/aps.74.20250239
    [3] Xie Zhen, Li Jing-Xing, Zheng Hua, Zhang Wen-Chao, Zhu Li-Lin, Liu Xing-Quan, Tan Zhi-Guang, Zhou Dai-Mei, Bonasera Aldo. Midrapidity average transverse momentum of identified charged particles in high-energy heavy-ion collisions. Acta Physica Sinica, doi: 10.7498/aps.73.20240905
    [4] Liu He, Chu Peng-Cheng. Elliptic flow splitting of charged pions in relativistic heavy-ion collisions. Acta Physica Sinica, doi: 10.7498/aps.72.20230454
    [5] Lin Shu, Tian Jia-Yuan. Medium correction to gravitational form factors. Acta Physica Sinica, doi: 10.7498/aps.72.20222473
    [6] Sheng Xin-Li, Liang Zuo-Tang, Wang Qun. Global spin alignment of vector mesons in heavy ion collisions. Acta Physica Sinica, doi: 10.7498/aps.72.20230071
    [7] Sun Xu, Zhou Chen-Sheng, Chen Jin-Hui, Chen Zhen-Yu, Ma Yu-Gang, Tang Ai-Hong, Xu Qing-Hua. Measurements of global polarization of QCD matter in heavy-ion collisions. Acta Physica Sinica, doi: 10.7498/aps.72.20222452
    [8] Zhu Xi-Rui, Meng Xu-Jun, Tian Ming-Feng. Theoretical study of electronic eqution of state for plasmas with transitional region. Acta Physica Sinica, doi: 10.7498/aps.57.4049
    [9] Liu Jian-Ye, Hao Huan-Feng, Zuo Wei, Li Xi-Guo. Medium effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, doi: 10.7498/aps.57.2136
    [10] Jiang Zhi-Jin. The numbers of participants and nucleon-nucleon collisions in high-energy heavy-ion collisions. Acta Physica Sinica, doi: 10.7498/aps.56.5191
    [11] Bian Bao-An, Zhou Hong-Yu, Zhang Feng-Shou. Symmetry energy and isospin effects of threshold energy of radial flow in heavy ion collisions. Acta Physica Sinica, doi: 10.7498/aps.56.1334
    [12] Li Qiang, Jiang Zhi-Jin, Xia Hong-Fu. J/ψ anomalous suppression in high-energy heavy-ion collisions. Acta Physica Sinica, doi: 10.7498/aps.55.5161
    [13] Zhang Fang, Zuo Wei, Yong Gao-Chan. Probing the high density behavior of the symmetry energy by using the neutron-proton differential flow. Acta Physica Sinica, doi: 10.7498/aps.55.5769
    [14] Liu Jian-Ye, Xing Yong-Zhong, Guo Wen-Jun. Entrance channel effects on the role of isospin-dependent momentum interaction in isospin fractionation in heavy ion collisions. Acta Physica Sinica, doi: 10.7498/aps.55.91
    [15] Liu Jian-Ye, Guo Wen-Jun, Xing Yong-Zhong, Lee Xi-Guo, Zuo Wei. Nuclear reaction dynamics induced by halo-nuclei at intermediate energy heavy ion collisions. Acta Physica Sinica, doi: 10.7498/aps.55.1068
    [16] Yong Gao-Chan, Li Bao-An, Chen Lie-Wen, Zuo Wei. Flipped symmetry potential in heavy-ion collisions. Acta Physica Sinica, doi: 10.7498/aps.55.5166
    [17] Guo Wen-Jun, Liu Jian-Ye, Xing Yong-Zhong. The isospin effect of momentum-dependent interaction in heavy ion collisions. Acta Physica Sinica, doi: 10.7498/aps.54.3082
    [18] Xing Yong-Zhong, Liu Jian-Ye, Guo Wen-Jun, Fang Yu-Tian. Dependence of isospin fractionation process on the neutron-proton ratio of a colliding system in intermediate energy heavy-ion collisions. Acta Physica Sinica, doi: 10.7498/aps.53.2106
    [19] Jiang Zhi-Jin. The study of centrality dependence of rapidity densities of charged-multiplicity. Acta Physica Sinica, doi: 10.7498/aps.53.1020
    [20] AN ZHI-GANG. THE ACTIVITY EXPANSION FOR THE EQUATION OF STATE OF A PLASMA. Acta Physica Sinica, doi: 10.7498/aps.28.140
Metrics
  • Abstract views:  55
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  09 May 2025

/

返回文章
返回
Baidu
map