搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳高纬和低纬活动现象的混沌与分形特征

周双 冯勇 吴文渊

引用本文:
Citation:

太阳高纬和低纬活动现象的混沌与分形特征

周双, 冯勇, 吴文渊

Chaos and fractal properties of solar activity phenomena at the high and low latitudes

Zhou Shuang, Feng Yong, Wu Wen-Yuan
PDF
导出引用
  • 为了研究太阳高纬度和低纬度活动现象在南北半球的混沌与分形特征, 结合递归分析方法与Grassberger-Procaccia算法两种技术对1952年2月至1998年6月的极区光斑和黑子数目两种太阳磁活动指标进行了详细分析和比较. 主要结论如下: 1)由于太阳活动现象与磁场的时空演化密切相关, 导致太阳活动在南半球和北半球的混沌与分形特征具有不对称性, 太阳高纬度和低纬度活动现象的混沌与分形特征具有差异性; 2)太阳高纬度活动现象比低纬度活动现象具有更强的混沌程度和更复杂的分形结构, 其中太阳高纬度活动现象在北半球具有最强的混沌程度和最复杂的分形结构.
    The solar magnetic activity is produced by a complex dynamo mechanism and exhibits nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar activity phenomena are of great importance for understanding the nonlinear dynamo actions, especially nonlinear dynamo models. To study the chaotic and fractal properties of solar activity phenomena at the high-and low-latitudes, the polar faculae and sunspot numbers in the time interval from 1952 February to 1998 June are used to investigate their nonlinear dynamical behavior by the recurrence analysis method and Grassberger-Procaccia (G-P) algorithm. Firstly, the monthly average value of both polar faculae and sunspot numbers are smoothed to filter the noisy signal by the 13-point smoothing method. This procedure can keep the original dynamical information. Secondly, the correlation coefficient of these two solar activity indicators is analyzed, and the analysis results indicate that there is a negative correlation between polar faculae and sunspot numbers. To obtain more accurate results, the recurrence quantification analysis (RQA) is used to obtain the average value of the rate of DET by selecting four groups of different parameters. And then, we use the G-P algorithm to draw the correlation integral curve graphs and to obtain the correlation dimension of polar faculae and the sunspot numbers. Finally, the analysis results given by RQA and G-P algorithm are analyzed and compared by advanced statistical method. The main conclusions of this paper are as follows. 1) From a statistical point of view, the chaotic and fractal properties of high-and low-latitudes solar activity are different between in the northern hemisphere and in the southern hemisphere, owing to the fact that the temporal variation of solar activity is closely related to the magnetic field evolution. This result is in agreement with the previous results given by the polar faculae. It should be pointed out that this result is not the main goal of this article, we only reinforce this conclusion by the recurrence analysis and G-P algorithm. 2) The chaotic behaviors of solar magnetic activity at high latitude are stronger than at low latitude. Furthermore, the high-latitude solar activity in the northern hemisphere has the most complex fractal structure. Based on the solar nonlinear dynamo theory, the polar magnetic fields are the seed fields of the solar activity. That is to say, the physical meaning of polar faculae is more important than sunspot numbers. We think that our results are useful for understanding the physical nature of the systematic regularity of solar activity phenomena.
      通信作者: 周双, zhoushuang@cigit.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11301524)和重庆市基础与前沿研究计划院士专项(批准号: cstc2015jcyjys40001)资助的课题.
      Corresponding author: Zhou Shuang, zhoushuang@cigit.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11301524) and the Chongqing Academicians Special Research Project Based on Basic and Frontier, China (Grant No. cstc2015jcyjys40001).
    [1]

    Fang C, Ding M D, Chen P F 2008 Physics of Solar Active Regions (Nanjing: Nanjing University Press) p18 (in Chinese) [方成, 丁明德, 陈鹏飞 2008 太阳活动区物理 (南京:南京大学出版社) 第18 页]

    [2]

    Deng L H, Qu Z Q, Yan X L, Wang K R 2013 Res. Astron. Astrophys. 13 104

    [3]

    Chowdhury P, Khan M, Ray P C 2009 Mon. Not. R. Astron. Soc. 392 1159

    [4]

    Li K J, Feng W, Xu J C, Gao P X, Yang L H, Liang H F, Zhan L S 2012 Astrophys. J. 747 135

    [5]

    Qu Z N, Kong D F, Xiang N B, Feng W 2015 Astrophys. J. 798 113

    [6]

    Schatten K 2005 Geophys. Res. Lett. 32 L21106

    [7]

    Higgins P A, Gallagher P T, McAteer R J, Bloomfield D S 2011 Adv. Space Res. 47 2105

    [8]

    Friis-Christensen E, Lassen K 1991 Science 254 698

    [9]

    Lean J, Beer J, Bradley R 1995 Geophys. Res. Lett. 22 3195

    [10]

    Cherry N 2003 Nat. Hazards 29 1

    [11]

    Mendoza B, de la Pena S S 2010 Adv. Space Res. 46 449

    [12]

    Hanslmeier A, Brajsa R 2010 Astron. Astrophys. 509 A5

    [13]

    Spiegel E A 2009 Space Sci. Rev. 144 25

    [14]

    Zhou S, Feng Y, Wu W Y, Li Y, Liu J 2014 Res. Astron. Astrophys. 14 104

    [15]

    Li Q X, Li K J 2007 Chin. J. Astron. Astrophys. 7 435

    [16]

    Li Q X, Li K J 2007 Publ. Astron. Soc. Jpn. 59 983

    [17]

    Tang J, Zhang X 2012 Acta Phys. Sin. 61 169601 (in Chinese) [唐洁, 张雄 2012 61 169601]

    [18]

    Zou P, Li Q X, Wu N 2014 Mon. Not. R. Astron. Soc. 2014 437 38

    [19]

    Deng L H, Li B, Xiang Y Y, Dun G T 2014 Adv. Space Res. 2014 54 125

    [20]

    Deng L H, Qu Z Q, Yan X L, Liu T, Wang K R 2012 J. Astrophys. Astron. 33 221

    [21]

    Deng L H, Qu Z Q, Yan X L, Liu T, Wang K R 2012 Astron. Nach. 33 221

    [22]

    Aschwanden M J, Aschwanden P D 2008 Astrophys. J. 674 530

    [23]

    Aschwanden M J, Aschwanden P D 2008 Astrophys. J. 674 544

    [24]

    Lepreti F, Fanello P C, Zaccaro F, Carbone V 2000 Sol. Phys. 197 149

    [25]

    Sen A K 2007 Sol. Phys. 241 67

    [26]

    Panchev S, Tsekov M 2007 J. Atmos. Sol. Terr. Phys. 69 2391

    [27]

    Deng L H, Song J Y, Xiang Y Y, Tang Y K 2011 J. Astrophys. Astron. 32 401

    [28]

    Deng L, Qu Z, Dun G, Xu C 2013 Publ. Astron. Soc. Jpn. 65 11

    [29]

    Zbilut J P, Giuliani A, Webber C L J 2000 Phys. Lett. A 267 174

    [30]

    Manetti C, Giuliani A, Ceruso M A, Webber C L J, Zbilut J P 2001 Phys. Lett. A 281 317

    [31]

    Thomasson N, Hoeppner T J, Webber C L J, Zbilut J P 2001 Phys. Lett. A 279 94

    [32]

    Webber C L J 2012 Front. Physiol. 3 382

    [33]

    Han G S, Yu Z G, Ann V 2011 Chin. Phys. B 20 100504

    [34]

    Liu J, Shi S T, Zhao J C 2013 Chin. Phys.B 22 010505

    [35]

    Meng Q F, Chen S S, Chen Y H, Feng Z Q 2014 Acta Phys. Sin. 63 050506 (in Chinese) [孟庆芳, 陈珊珊, 陈月辉, 冯志全 2014 63 050506]

    [36]

    Ouyang G, Li X, Dang C, Richards D A 2008 Clin. Neurophysiol. 119 1747

    [37]

    Zhao P, Zhou Y L, Sun B 2010 J. Vibr. Measu. Diagn. 6 612 (in Chinese) [赵鹏,周云龙, 孙斌 2010 振动 · 测试与诊断 6 612]

    [38]

    Liu G L 2009 Acta Phys. Sin. 58 3359 (in Chinese) [刘贵立 2009 58 3359]

    [39]

    Mandelbrot B B 1985 Phys. Scrip. 32 257

    [40]

    Badii R, Broggi G, Derighetti B, Ravani M, Ciliberto S, Politi A, Rubio M A 1988 Phys. Rev. Lett. 60 979

    [41]

    Grassberger P 1985 Phys. Lett. A 107 101

    [42]

    Li Q X 2008 Ph. D. Dissertation (Kunming: Yunnan Observatories Chinese Academy of Sciences) (in Chinese) [李启秀 2008 博士论文 (昆明: 中国科学院云南天文台)]

    [43]

    Echmann J P, Kamphorst S O, Ruelle D 1987 Europhys. Lett. 4 973

    [44]

    Zbilut J P, Webber C L J 1992 Phys. Lett. A 171 199

    [45]

    Webber C L J, Zbilut J P 1994 J. Appl. Physiol. 76 965

    [46]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [47]

    Grassberger P, Procaccia I 1983 Physica D 9 189

    [48]

    Watari S 1996 Sol. Phys. 63 259

    [49]

    Zhu H W 2004 Applied Statistics (Beijing: Higher Education Press) p155 (in Chinese) [朱洪文 2004 应用统计 (北京: 高等教育出版社) 第155 页]

    [50]

    Yang X Y, Xiang S P, Chen Q D 2014 Statistics and Decision 9 78 (in Chinese) [杨湘豫, 向圣鹏, 陈前达 2014 统计与决策 9 78]

  • [1]

    Fang C, Ding M D, Chen P F 2008 Physics of Solar Active Regions (Nanjing: Nanjing University Press) p18 (in Chinese) [方成, 丁明德, 陈鹏飞 2008 太阳活动区物理 (南京:南京大学出版社) 第18 页]

    [2]

    Deng L H, Qu Z Q, Yan X L, Wang K R 2013 Res. Astron. Astrophys. 13 104

    [3]

    Chowdhury P, Khan M, Ray P C 2009 Mon. Not. R. Astron. Soc. 392 1159

    [4]

    Li K J, Feng W, Xu J C, Gao P X, Yang L H, Liang H F, Zhan L S 2012 Astrophys. J. 747 135

    [5]

    Qu Z N, Kong D F, Xiang N B, Feng W 2015 Astrophys. J. 798 113

    [6]

    Schatten K 2005 Geophys. Res. Lett. 32 L21106

    [7]

    Higgins P A, Gallagher P T, McAteer R J, Bloomfield D S 2011 Adv. Space Res. 47 2105

    [8]

    Friis-Christensen E, Lassen K 1991 Science 254 698

    [9]

    Lean J, Beer J, Bradley R 1995 Geophys. Res. Lett. 22 3195

    [10]

    Cherry N 2003 Nat. Hazards 29 1

    [11]

    Mendoza B, de la Pena S S 2010 Adv. Space Res. 46 449

    [12]

    Hanslmeier A, Brajsa R 2010 Astron. Astrophys. 509 A5

    [13]

    Spiegel E A 2009 Space Sci. Rev. 144 25

    [14]

    Zhou S, Feng Y, Wu W Y, Li Y, Liu J 2014 Res. Astron. Astrophys. 14 104

    [15]

    Li Q X, Li K J 2007 Chin. J. Astron. Astrophys. 7 435

    [16]

    Li Q X, Li K J 2007 Publ. Astron. Soc. Jpn. 59 983

    [17]

    Tang J, Zhang X 2012 Acta Phys. Sin. 61 169601 (in Chinese) [唐洁, 张雄 2012 61 169601]

    [18]

    Zou P, Li Q X, Wu N 2014 Mon. Not. R. Astron. Soc. 2014 437 38

    [19]

    Deng L H, Li B, Xiang Y Y, Dun G T 2014 Adv. Space Res. 2014 54 125

    [20]

    Deng L H, Qu Z Q, Yan X L, Liu T, Wang K R 2012 J. Astrophys. Astron. 33 221

    [21]

    Deng L H, Qu Z Q, Yan X L, Liu T, Wang K R 2012 Astron. Nach. 33 221

    [22]

    Aschwanden M J, Aschwanden P D 2008 Astrophys. J. 674 530

    [23]

    Aschwanden M J, Aschwanden P D 2008 Astrophys. J. 674 544

    [24]

    Lepreti F, Fanello P C, Zaccaro F, Carbone V 2000 Sol. Phys. 197 149

    [25]

    Sen A K 2007 Sol. Phys. 241 67

    [26]

    Panchev S, Tsekov M 2007 J. Atmos. Sol. Terr. Phys. 69 2391

    [27]

    Deng L H, Song J Y, Xiang Y Y, Tang Y K 2011 J. Astrophys. Astron. 32 401

    [28]

    Deng L, Qu Z, Dun G, Xu C 2013 Publ. Astron. Soc. Jpn. 65 11

    [29]

    Zbilut J P, Giuliani A, Webber C L J 2000 Phys. Lett. A 267 174

    [30]

    Manetti C, Giuliani A, Ceruso M A, Webber C L J, Zbilut J P 2001 Phys. Lett. A 281 317

    [31]

    Thomasson N, Hoeppner T J, Webber C L J, Zbilut J P 2001 Phys. Lett. A 279 94

    [32]

    Webber C L J 2012 Front. Physiol. 3 382

    [33]

    Han G S, Yu Z G, Ann V 2011 Chin. Phys. B 20 100504

    [34]

    Liu J, Shi S T, Zhao J C 2013 Chin. Phys.B 22 010505

    [35]

    Meng Q F, Chen S S, Chen Y H, Feng Z Q 2014 Acta Phys. Sin. 63 050506 (in Chinese) [孟庆芳, 陈珊珊, 陈月辉, 冯志全 2014 63 050506]

    [36]

    Ouyang G, Li X, Dang C, Richards D A 2008 Clin. Neurophysiol. 119 1747

    [37]

    Zhao P, Zhou Y L, Sun B 2010 J. Vibr. Measu. Diagn. 6 612 (in Chinese) [赵鹏,周云龙, 孙斌 2010 振动 · 测试与诊断 6 612]

    [38]

    Liu G L 2009 Acta Phys. Sin. 58 3359 (in Chinese) [刘贵立 2009 58 3359]

    [39]

    Mandelbrot B B 1985 Phys. Scrip. 32 257

    [40]

    Badii R, Broggi G, Derighetti B, Ravani M, Ciliberto S, Politi A, Rubio M A 1988 Phys. Rev. Lett. 60 979

    [41]

    Grassberger P 1985 Phys. Lett. A 107 101

    [42]

    Li Q X 2008 Ph. D. Dissertation (Kunming: Yunnan Observatories Chinese Academy of Sciences) (in Chinese) [李启秀 2008 博士论文 (昆明: 中国科学院云南天文台)]

    [43]

    Echmann J P, Kamphorst S O, Ruelle D 1987 Europhys. Lett. 4 973

    [44]

    Zbilut J P, Webber C L J 1992 Phys. Lett. A 171 199

    [45]

    Webber C L J, Zbilut J P 1994 J. Appl. Physiol. 76 965

    [46]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [47]

    Grassberger P, Procaccia I 1983 Physica D 9 189

    [48]

    Watari S 1996 Sol. Phys. 63 259

    [49]

    Zhu H W 2004 Applied Statistics (Beijing: Higher Education Press) p155 (in Chinese) [朱洪文 2004 应用统计 (北京: 高等教育出版社) 第155 页]

    [50]

    Yang X Y, Xiang S P, Chen Q D 2014 Statistics and Decision 9 78 (in Chinese) [杨湘豫, 向圣鹏, 陈前达 2014 统计与决策 9 78]

  • [1] 何建超, 方明卫, 包芸. 二维湍流热对流最大速度Re数特性及流态突变特征Re.  , 2022, 71(19): 194702. doi: 10.7498/aps.71.20220352
    [2] 周双, 冯勇, 吴文渊. 一种识别关联维数无标度区间的新方法.  , 2015, 64(13): 130504. doi: 10.7498/aps.64.130504
    [3] 高鹏, 王超, 支亚, 李旸, 王立玢, 丛正. 铝合金焊缝电涡流磁场信号的非线性特征提取及分类方法研究.  , 2014, 63(13): 134103. doi: 10.7498/aps.63.134103
    [4] 孟庆芳, 陈珊珊, 陈月辉, 冯志全. 基于递归量化分析与支持向量机的癫痫脑电自动检测方法.  , 2014, 63(5): 050506. doi: 10.7498/aps.63.050506
    [5] 许莹, 李晋斌. 大粒子数二维硬核玻色子系统的量子蒙特卡罗模拟.  , 2012, 61(11): 110207. doi: 10.7498/aps.61.110207
    [6] 唐洁, 张雄. 基于混沌理论的太阳黑子数平滑月均值预报.  , 2012, 61(16): 169601. doi: 10.7498/aps.61.169601
    [7] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法.  , 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [8] 边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋. 基于复杂度的针刺脑电信号特征提取.  , 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [9] 王兴元, 贺毅杰. 分数阶统一混沌系统的投影同步.  , 2008, 57(3): 1485-1492. doi: 10.7498/aps.57.1485
    [10] 何 亮, 杜 磊, 庄奕琪, 陈春霞, 卫 涛, 黄小君. 金属互连电迁移噪声的相关维数研究.  , 2007, 56(12): 7176-7182. doi: 10.7498/aps.56.7176
    [11] 丁 刚, 钟诗胜. 基于时变阈值过程神经网络的太阳黑子数预测.  , 2007, 56(2): 1224-1230. doi: 10.7498/aps.56.1224
    [12] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数.  , 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [13] 宋招权, 徐 慧, 李燕峰, 刘小良. 非对角无序和维数效应对低维无序系统电子结构的影响.  , 2005, 54(5): 2198-2201. doi: 10.7498/aps.54.2198
    [14] 雷 敏, 孟 光, 冯正进. 连续动力系统时间序列的非线性检验.  , 2005, 54(3): 1059-1063. doi: 10.7498/aps.54.1059
    [15] 王安良, 杨春信. 评价奇怪吸引子分形特征的Grassberger-Procaccia算法.  , 2002, 51(12): 2719-2729. doi: 10.7498/aps.51.2719
    [16] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数.  , 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
    [17] 郑德娟, 李 丹, 周 雁, 韩宝善. 枝状畴的形成及分形维数计算.  , 1999, 48(13): 250-256. doi: 10.7498/aps.48.250.2
    [18] 石云龙, 聂一行, 陈鸿, 吴翔. 耗散量子隧道系统中的形变效应与热库维数的关系.  , 1993, 42(10): 1648-1653. doi: 10.7498/aps.42.1648
    [19] 冯跃新, 冯昌京, 刘申之. 各向异性扩散控制聚集集团的豪斯道夫维数.  , 1992, 41(1): 1-9. doi: 10.7498/aps.41.1
    [20] 陈治融, 陈飞武, 袁慧, 李晓辉, 赵莲青, 牛文章, 陈炳兴, 滕淑兰. 强迫的Oregonator振子混沌维数与立方映象.  , 1992, 41(7): 1081-1086. doi: 10.7498/aps.41.1081
计量
  • 文章访问数:  5453
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-03
  • 修回日期:  2015-09-07
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map