搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

遮蔽效应对抛射沉积模型标度性质的影响

郝大鹏 唐刚 夏辉 韩奎 寻之朋

引用本文:
Citation:

遮蔽效应对抛射沉积模型标度性质的影响

郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋

Effects of shadowing on the scaling behavior of the ballistic deposition model

Hao Da-Peng, Tang Gang, Xia Hui, Han Kui, Xun Zhi-Peng
PDF
导出引用
  • 在表面粗糙化生长过程中粒子非垂直入射产生的遮蔽效应是一种长程相互作用, 实验发现非垂直入射时生长表面形貌和生长性质都受到遮蔽效应的影响. 本文通过模拟倾斜入射的抛射沉积模型得到了其标度指数、 表面统计的偏度和峰度以及生长体的多孔性与入射角度的关系, 模拟结果显示标度指数与入射角度的关系是非单调的, 而偏度和峰度的有限尺寸效应也取决于入射角度的大小. 同时本文对以上模拟结果进行了定性的分析.
    In surface roughening of the growth process, the shadowing effect generated by non-normal incidence of particles is a kind of long-range interaction. It is found that the surface morphology and the bulk property in non-normal incidence are nontrivially affected by shadowing effect. In this paper, the effects of the oblique-incidence angle on scaling exponent, skewness and kurtosis in surface statistics and bulk porosity are investigated by simulating the oblique-incidence ballistic deposition model. The results illustrate that there are a non-monotonic relation between scaling exponents and oblique-incidence angle, and the finite size effects of skewness and kurtosis depend on oblique-incidence angle. The simulation results are also analyzed qualitatively in the paper.
    • 基金项目: 国家自然科学基金(批准号: 10674177), 中国矿业大学校青年基金(批准号: 2008A035)和中央高校 基本科研业务费专项资金(批准号: 2010LKWL04-CUMT)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.10674177), the Youth Foundation of China University of Mining Technology (Grant No. 2008A035), and the Fundamental Research Funds for the Central Universities(Grant No.2010LKWL04- CUMT).
    [1]

    Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium (Cambridge: Cambridge University Press)

    [2]

    Barabasi A L, Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)

    [3]

    Family F, Vicsek T 1991 Dynamics of Fractal Surfaces(Singapore: World Scientific Press)

    [4]

    Family F, Vicsek T 1985 J. Phys. A 18 L75

    [5]

    Edwards S F,Wilkinson D R 1982 Proc. R. Soc. London A 381 17

    [6]

    Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889

    [7]

    L′opez J M, Rodriguez M A, Cuerno R 1997 Phys. Rev. E 56 3993

    [8]

    L′opez J M, Rodriguez M A, Cuerno R 1997 Physica A 246 329

    [9]

    Pang N N, Tzeng W J 2004 Phys. Rev. E 70 036115

    [10]

    Chin C S, Nijs M D 1999 Phys. Rev. E 59 2633

    [11]

    Aar?ao Reis F D A 2004 Phys. Rev. E 70 031607

    [12]

    Hao D P, Tang G, Xia H, Han K, Xun Z P 2011 Acta Phys. Sin. 60 038102 (in Chinese) [郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋 2011 60 038102]

    [13]

    Katzav E, Edwards S F, Schwartz M 2006 Europhys. Lett. 75 29

    [14]

    Yu J, Amar J G 2002 Phys. Rev. E 65 060601

    [15]

    Silveira F A, Aar?ao Reis F D A 2007 Phys. Rev. E 75 061608

    [16]

    Shim Y, Borovikov V, Amar J G 2008 Phys. Rev. B 77 235423

    [17]

    Forgerini F L, Figueiredo W 2009 Phys. Rev. E 79 041602

    [18]

    Yu J G, Amar J G 2002 Phys. Rev. E 66 021603

    [19]

    Datta D P, Chini T K 2007 Phys. Rev. B 76 075323

    [20]

    Kim J, Dohnalek Z, Kay B D 2005 Surface Science 586 137

    [21]

    Asgharizadeh S, Sutton M 2009 Phys. Rev. B 79 125405

    [22]

    Dolatshahi-Pirouz A, Hovgaard M B, Rechendorff K, Chevallier J, Foss M, Besenbacher F 2008 Phys. Rev. B 77 115427

    [23]

    Rabbering FW, Stoian G, Gastel R V,Wormeester H, Poelsema B 2010 Phys. Rev. B 81 115425

    [24]

    Shim Y, Amar J G 2007 Phys. Rev. Lett. 98 046103

    [25]

    Shim Y, Mills M E, Borovikov V, Amar J G 2009 Phys. Rev. E 79 051604

    [26]

    Hu B, Tang G 2002 Phys. Rev. E 66 026105

    [27]

    Tang G, Ma B K 2002 Acta Phys. Sin. 51 994(in Chinese) [唐刚, 马本堃 2002 51 994]

    [28]

    Tang G, Ma B K 2001 Acta Phys. Sin. 50 851 (in Chinese) [唐刚, 马本堃 2001 50 851]

    [29]

    Hao D P, Tang G, Xia H, Chen H, Zhang L M, Xun Z P 2007 Acta Phys. Sin. 56 2018 (in Chinese) [郝大鹏, 唐刚, 夏辉, 陈华, 张雷明, 寻之朋 2007 56 2018]

    [30]

    Pelliccione M, Lu T M 2008 Evolution of Thin Film Morphology (London: Springer-Verlag)

    [31]

    Aar?ao Reis F D A 2001 Phys. Rev. E 63 056116

    [32]

    Ramasco J J, L′opez J M, Rodr′?guez M A 2000 Phys. Rev. Lett. 84 2199

    [33]

    L′opez J M, Castro M, Gallego R 2005 Phys. Rev. Lett. 94 166103

    [34]

    Asgharizadeh S, Sutton M, Robbie K, Brown T 2009 Phys. Rev. B 79 125405

  • [1]

    Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium (Cambridge: Cambridge University Press)

    [2]

    Barabasi A L, Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)

    [3]

    Family F, Vicsek T 1991 Dynamics of Fractal Surfaces(Singapore: World Scientific Press)

    [4]

    Family F, Vicsek T 1985 J. Phys. A 18 L75

    [5]

    Edwards S F,Wilkinson D R 1982 Proc. R. Soc. London A 381 17

    [6]

    Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889

    [7]

    L′opez J M, Rodriguez M A, Cuerno R 1997 Phys. Rev. E 56 3993

    [8]

    L′opez J M, Rodriguez M A, Cuerno R 1997 Physica A 246 329

    [9]

    Pang N N, Tzeng W J 2004 Phys. Rev. E 70 036115

    [10]

    Chin C S, Nijs M D 1999 Phys. Rev. E 59 2633

    [11]

    Aar?ao Reis F D A 2004 Phys. Rev. E 70 031607

    [12]

    Hao D P, Tang G, Xia H, Han K, Xun Z P 2011 Acta Phys. Sin. 60 038102 (in Chinese) [郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋 2011 60 038102]

    [13]

    Katzav E, Edwards S F, Schwartz M 2006 Europhys. Lett. 75 29

    [14]

    Yu J, Amar J G 2002 Phys. Rev. E 65 060601

    [15]

    Silveira F A, Aar?ao Reis F D A 2007 Phys. Rev. E 75 061608

    [16]

    Shim Y, Borovikov V, Amar J G 2008 Phys. Rev. B 77 235423

    [17]

    Forgerini F L, Figueiredo W 2009 Phys. Rev. E 79 041602

    [18]

    Yu J G, Amar J G 2002 Phys. Rev. E 66 021603

    [19]

    Datta D P, Chini T K 2007 Phys. Rev. B 76 075323

    [20]

    Kim J, Dohnalek Z, Kay B D 2005 Surface Science 586 137

    [21]

    Asgharizadeh S, Sutton M 2009 Phys. Rev. B 79 125405

    [22]

    Dolatshahi-Pirouz A, Hovgaard M B, Rechendorff K, Chevallier J, Foss M, Besenbacher F 2008 Phys. Rev. B 77 115427

    [23]

    Rabbering FW, Stoian G, Gastel R V,Wormeester H, Poelsema B 2010 Phys. Rev. B 81 115425

    [24]

    Shim Y, Amar J G 2007 Phys. Rev. Lett. 98 046103

    [25]

    Shim Y, Mills M E, Borovikov V, Amar J G 2009 Phys. Rev. E 79 051604

    [26]

    Hu B, Tang G 2002 Phys. Rev. E 66 026105

    [27]

    Tang G, Ma B K 2002 Acta Phys. Sin. 51 994(in Chinese) [唐刚, 马本堃 2002 51 994]

    [28]

    Tang G, Ma B K 2001 Acta Phys. Sin. 50 851 (in Chinese) [唐刚, 马本堃 2001 50 851]

    [29]

    Hao D P, Tang G, Xia H, Chen H, Zhang L M, Xun Z P 2007 Acta Phys. Sin. 56 2018 (in Chinese) [郝大鹏, 唐刚, 夏辉, 陈华, 张雷明, 寻之朋 2007 56 2018]

    [30]

    Pelliccione M, Lu T M 2008 Evolution of Thin Film Morphology (London: Springer-Verlag)

    [31]

    Aar?ao Reis F D A 2001 Phys. Rev. E 63 056116

    [32]

    Ramasco J J, L′opez J M, Rodr′?guez M A 2000 Phys. Rev. Lett. 84 2199

    [33]

    L′opez J M, Castro M, Gallego R 2005 Phys. Rev. Lett. 94 166103

    [34]

    Asgharizadeh S, Sutton M, Robbie K, Brown T 2009 Phys. Rev. B 79 125405

  • [1] 宋天舒, 夏辉. 基于数值稳定型神经网络的Villain-Lai-Das Sarma方程的动力学标度行为研究.  , 2024, 73(16): 160501. doi: 10.7498/aps.73.20240852
    [2] 杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎. 科赫分形基底上受限固-固模型动力学标度行为的数值研究.  , 2015, 64(13): 130501. doi: 10.7498/aps.64.130501
    [3] 陈冲, 丁炯, 张宏, 陈琢. 累积放电模型及其符号动力学研究.  , 2013, 62(14): 140502. doi: 10.7498/aps.62.140502
    [4] 寻之朋, 唐刚, 夏辉, 郝大鹏. 1+1 维抛射沉积模型内部结构动力学行为的数值研究.  , 2013, 62(1): 010503. doi: 10.7498/aps.62.010503
    [5] 张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的数值模拟研究.  , 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [6] 谢裕颖, 唐刚, 寻之朋, 韩奎, 夏辉, 郝大鹏, 张永伟, 李炎. 随机稀释基底上刻蚀模型动力学标度行为的数值模拟研究.  , 2012, 61(7): 070506. doi: 10.7498/aps.61.070506
    [7] 张振俊, 于淼, 巩龙, 童培庆. 两种扩展Harper模型的波包动力学.  , 2011, 60(9): 097104. doi: 10.7498/aps.60.097104
    [8] 吴渝, 杨晶晶, 王利. Swarm模型突现行为的动力学特性分析.  , 2011, 60(10): 108902. doi: 10.7498/aps.60.108902
    [9] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋. 含遮蔽抛射沉积模型的有限尺寸效应.  , 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [10] 朱琦, 潘佰良, 陈立, 王亚娟, 张迅懿. 光泵铯蒸气激光的动力学模型.  , 2010, 59(3): 1797-1801. doi: 10.7498/aps.59.1797
    [11] 王延, 郑志刚. 无标度网络上的传播动力学.  , 2009, 58(7): 4421-4425. doi: 10.7498/aps.58.4421
    [12] 陈 钢, 庄德文, 张 航, 徐 军, 程 成. 差分法求解时空分布的激光动力学模型.  , 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [13] 任 敏, 张 磊, 胡九宁, 邓 宁, 陈培毅. 基于磁动力学方程的电流感应磁化翻转效应的宏观模型.  , 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [14] 郝大鹏, 唐 刚, 夏 辉, 陈 华, 张雷明, 寻之朋. 非局域Sun-Guo-Grant方程的自洽模耦合理论.  , 2007, 56(4): 2018-2023. doi: 10.7498/aps.56.2018
    [15] 杨吉军, 徐可为. 生长初期Ta膜的表面动态演化行为.  , 2007, 56(10): 6023-6027. doi: 10.7498/aps.56.6023
    [16] 唐 军, 杨先清, 仇 康. 反应限制聚集模型的动力学行为的研究.  , 2005, 54(7): 3307-3311. doi: 10.7498/aps.54.3307
    [17] 陈 波, 童培庆. 瓮模型中多粒子动力学的研究.  , 2005, 54(12): 5554-5558. doi: 10.7498/aps.54.5554
    [18] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为.  , 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
    [19] 程成, 孙威. CuBr脉冲激光动力学模型及其研究.  , 1992, 41(10): 1605-1612. doi: 10.7498/aps.41.1605
    [20] 方励之, 区智. 强耦合的动力学Jahn-Teller效应理论.  , 1966, 22(4): 471-486. doi: 10.7498/aps.22.471
计量
  • 文章访问数:  6872
  • PDF下载量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-18
  • 修回日期:  2011-04-26
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map