Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quark matter and quark star in color-flavor-locked phase

Chu Peng-Cheng Liu He Du Xian-Bin

Citation:

Quark matter and quark star in color-flavor-locked phase

Chu Peng-Cheng, Liu He, Du Xian-Bin
PDF
HTML
Get Citation
  • In this work, we investigate the thermodynamical properties of strange quark matter (SQM) and color-flavor-locked (CFL) quark matter under strong magnetic fields by using a quasiparticle model. We calculate the energy density and the corresponding anisotropic pressure of both SQM and CFL quark matter. Our results indicate that CFL quark matter exhibits greater stability than the SQM, and the pressure of CFL quark matter increases with the energy gap constant $\varDelta $ increasing. We also observe that the oscillation effects coming from the lowest Landau level can be reduced by increasing the energy gap constant $ \varDelta $, which cannot be observed in SQM under a similar strong magnetic field. The equivalent quark mass for u, d, and s quark and the chemical potential for each flavor of quarks decrease with the energy gap constant $ \varDelta $ increasing, which matches the conclusion that CFL quark matter is more stable than SQM. From the calculations of the magnetars with SQM and CFL quark matter, we find that the maximum mass of magnetars increases with the energy gap constant $\varDelta $ increasing for both the longitudinal and the transverse orientation distribution of magnetic field. Additionally, the tidal deformability of the magnetars increases with the $\varDelta $ increasing. On the other hand, the central baryon density of the maximum mass of the magnetars decreases with the $\varDelta $ increasing. The results also indicate that the mass-radius lines of the CFL quark star can also satisfy the new estimates of the mass-radius region from PSR J0740 + 6620, PSR J0030 + 0451, and HESS J1731-347.
      Corresponding author: Chu Peng-Cheng, kyois@126.com ; Liu He, liuhe@qut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132, 12205158, 11505100) and the Natural Science Foundation of Shandong Province, China(Grant Nos. ZR2022JQ04, ZR2021QA037, ZR2019YQ01).
    [1]

    Glendenning N K 2000 Compact Stars (2nd Ed.) (New York: Spinger-Verlag, Inc.

    [2]

    Weber F 1999 Pulsars as Astrophyical Laboratories for Nuclear and Particle Physics (London: IOP Publishing Ltd.

    [3]

    Lattimer J M, Prakash M 2004 Science 304 536Google Scholar

    [4]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 410 325Google Scholar

    [5]

    Demorest P 2010 Nature 467 1081Google Scholar

    [6]

    Antoniadis J 2013 Science 340 6131Google Scholar

    [7]

    Shahbaz T, Casares J 2018 Astrophys. J. 859 54Google Scholar

    [8]

    Cromartie H T, Fonseca E, Ransom S M et al. 2020 Nat. Astron. Lett. 4 72

    [9]

    Fonseca E, Cromartie H T, Pennucci T T, et al. 2021 Astrophys. J. Lett. 915 L12Google Scholar

    [10]

    Miller M C, Lamb F K, Dittmann A J, et al. 2021 Astrophys. J. Lett. 918 L28Google Scholar

    [11]

    Abbott R 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [12]

    Ivanenko D, Kurdgelaidze D F 1969 Lett. Nuovo Cimento 2 13Google Scholar

    [13]

    Itoh N 1970 Prog. Theor. Phys. 44 291Google Scholar

    [14]

    Bodmer A R 1971 Phys. Rev. D 4 1601Google Scholar

    [15]

    Witten E 1984 Phys. Rev. D 30 272Google Scholar

    [16]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379Google Scholar

    [17]

    Alcock C, Farh E, Olinto A 1986 Astrophys. J. 310 261Google Scholar

    [18]

    Weber F 2005 Prog. Part. Nucl. Phys. 54 193Google Scholar

    [19]

    Bombaci I, Parenti I, Vidana I 2004 Astrophys. J. 614 314Google Scholar

    [20]

    Staff J, Ouyed R, Bagchi M 2007 Astrophys. J. 667 340Google Scholar

    [21]

    Herzog T M, Röpke F K 2011 Phys. Rev. D 84 083002Google Scholar

    [22]

    Stephanov M A, Rajagopal K, Shuryak E V 1998 Phys. Rev. Lett. 81 4816Google Scholar

    [23]

    Terazawa H 1979 INS-Report (Tokyo: Univ. of Tokyo) p336

    [24]

    Alford M, Reddy S 2003 Phys. Rev. D 67 074024Google Scholar

    [25]

    Alford M, Jotwani P, Kouvaris C, Kundu J, Rajagopal K 2005 Phys. Rev. D 71 114011Google Scholar

    [26]

    Baldo M 2003 Phys. Lett. B 562 153Google Scholar

    [27]

    Ippolito N D, Ruggieri M, Rischke D H, Sedrakian A, Weber F 2008 Phys. Rev. D 77 023004Google Scholar

    [28]

    Lai X Y, Xu R X 2011 Res. Astron. Astrophys. 11 687Google Scholar

    [29]

    Avellar M G B de, Horvath J E, Paulucci L 2011 Phys. Rev. D 84 043004Google Scholar

    [30]

    Bonanno L, Sedrakian A 2012 A&A 539 A16Google Scholar

    [31]

    Chu P C, Wang B, Jia Y Y, Dong Y M, Wang S M, Li X H, Zhang L, Zhang X M, Ma H Y 2016 Phys. Rev. D 94 123014Google Scholar

    [32]

    Chu P C, Li X H, Wang B, Dong Y M, Jia Y Y, Wang S M, Ma H Y 2017 Eur. Phys. J. C 77 512Google Scholar

    [33]

    Chu P C, Zhou Y, Chen C, Li X H, Ma H Y 2020 J. Phys. G: Nucl. Part. Phys. 47 085201Google Scholar

    [34]

    Bailin D and Love A 1984 Phys. Rep. 107 325Google Scholar

    [35]

    Alford M G, Rajagopal K, Reddy S, Wilczek F 2001 Phys. Rev. D 64 074017Google Scholar

    [36]

    Shovkovy I A 2005 Found. Phys. 35 1309Google Scholar

    [37]

    Rajagopal K, Wilczek F 2001 Phys. Rev. L 86 3492Google Scholar

    [38]

    Alford M G, Rajagopal K, Schaefer T, Schmitt A 2008 Rev. Mod. Phys. 80 1455Google Scholar

    [39]

    Lugones G, Horvath J E 2003 Astron. Astrophys. 403 173Google Scholar

    [40]

    Horvath J E, Lugones G 2004 Astron. Astrophys. 422 L1Google Scholar

    [41]

    Woltjer L 1964 Astrophys. J. 140 1309Google Scholar

    [42]

    Mihara T A 1990 Nature 346 250Google Scholar

    [43]

    Chanmugam G 1992 Annu. Rev. Astron. Astrophys. 30 143Google Scholar

    [44]

    Lai D, Shapiro S L 1991 Astrophys. J. 383 745Google Scholar

    [45]

    Ferrer E J, Incera V, Keith J P, Portillo I, Springsteen P L 2010 Phys. Rev. C 82 065802Google Scholar

    [46]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys Rev. Lett. 79 2176Google Scholar

    [47]

    Bandyopadhyay D, Pal S, Chakrabarty S 1998 J. Phys. G: Nucl. Part. Phys. 24 1647Google Scholar

    [48]

    Menezes D P, Pinto M, Benghi, Avancini S, Providência C 2009 Phys. Rev. C 79 035807Google Scholar

    [49]

    Menezes D P, Pinto M, Benghi, Avancini S, Providência C 2009 Phys. Rev. C 80 065805Google Scholar

    [50]

    Ryu C Y, Kim K S, Cheoun Myung-Ki 2010 Phys. Rev. C 82 025804Google Scholar

    [51]

    Ryu C Y, Cheoun Myung-Ki, Kajino T, Maruyama T, Mathews Grant J 2012 Astropart. Phys. 38 25Google Scholar

    [52]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, WangN, Peng Q H 2016 Int. J. Mod. Phys. D 25(1) 1650002Google Scholar

    [53]

    Gao Z F, Wang N, Shan H, L i, X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [54]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [55]

    Yan F Z, Gao Z F, Yang W S, Dong A J 2021 Astron. Nachr. 342 249Google Scholar

    [56]

    Wang H, Gao Z F, Jia H Y, Wang N, Li X 2020 Universe 6 63Google Scholar

    [57]

    Li B P, Gao Z F 2023 Astron. Nachr. 344 e20220111

    [58]

    Deng Z L, Li X D, Gao Z F, Shao Y 2021 Astrophys. J. 909 174Google Scholar

    [59]

    G ao, Z F, Omar N, Shi X C, Wang N 2019 Astron. Nachr. 340 1030Google Scholar

    [60]

    Lander, S K 2023 Astrophys.J. 947 L16Google Scholar

    [61]

    Dong J M 2021 Mon. Not. R. Astron. Soc. 500 1505

    [62]

    Fu G Z, Xing C C, Wang N 2020 Eur. Phys. J. C 80 582Google Scholar

    [63]

    Schertler K, Greiner C, Thoma M H, Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659Google Scholar

    [64]

    Pisarski R D 1989 Nucl. Phys. A 498 423

    [65]

    Wen X J 2009 J. Phys. G: Nucl. Part. Phys. 36 025011Google Scholar

    [66]

    Zhang Z, Chu P C, Li X H, Liu H, Zhang X M 2021 Phys. Rev. D 103 103021Google Scholar

    [67]

    Chu P C, Chen L W 2014 Astrophys. J. 780 135Google Scholar

    [68]

    Chu P C 2018 Phys. Lett. B 778 447Google Scholar

    [69]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 103001Google Scholar

    [70]

    Chodos A, Jaffe R L, Ohnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [71]

    Alford M, Braby M, Paris M, Reddy S 2005 Astrophys. J. 629 969Google Scholar

    [72]

    Rehberg P, Klevansky S P, Hüfner J 1996 Phys. Rev. C 53 410Google Scholar

    [73]

    Hanauske M, Satarov L M, Mishustin I N, Stocker H, Greiner W 2001 Phys. Rev. D 64 043005Google Scholar

    [74]

    Rüster S B, Rischke D H 2004 Phys. Rev. D 69 045011Google Scholar

    [75]

    Menezes D P, Providencia C, Melrose D B 2006 J. Phys. G 32 1081Google Scholar

    [76]

    Chao J Y, Chu P C, Huang M 2013 Phys. Rev. D 88 054009Google Scholar

    [77]

    Chu P C, Wang X, Chen L W, Huang M 2015 Phys. Rev. D 91 023003Google Scholar

    [78]

    Chu P C, Wang B, Ma H Y, Dong Y M, Chang S L, Zheng C H, Liu J T, Zhang X M 2016 Phys. Rev. D 93 094032Google Scholar

    [79]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 083019Google Scholar

    [80]

    Roberts C D, Williams A G 1994 Prog. Part. Nucl. Phys. 33 477Google Scholar

    [81]

    Zong H S, Chang L, Hou F Y, Sun W M, Liu Y X 2005 Phys. Rev. C 71 015205Google Scholar

    [82]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [83]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801Google Scholar

    [84]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [85]

    Li A, Peng G X, Lu J F 2011 Res. Astron. Astrophys. 11 482Google Scholar

    [86]

    Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659

    [87]

    Schertler K, Greiner C, Sahu P K, Thoma M H 1998 Nucl. Phys. A 637 451

    [88]

    Alford M, Kouvaris C, Rajagopal K 2005 Phys. Rev. D 71 054009Google Scholar

    [89]

    Giannakis I, Hou D, Ren H C, et al. 2004 Phys. Rev. Lett. 93 232301Google Scholar

    [90]

    董爱军, 高志福, 杨晓峰等 2023 72 030502Google Scholar

    Dong A J, Gao Z F, Yang X F, et al 2023 Acta Phys. Sin. 72 030502Google Scholar

    [91]

    Ferrer E J, Vivian de la Incera 2005 Phys. Rev. Lett. 95 152002Google Scholar

    [92]

    Ferrer E J, Vivian de la Incera, Cristina Manuel 2006 Nucl. Phys. B 747 88Google Scholar

    [93]

    Feng B, Ferrer E J, Vivian de la Incera 2011 Nucl. Phys. B 853 213Google Scholar

    [94]

    Paulucci L, Ferrer E J, Vivian de la Incera, Horvath J E 2011 Phys. Rev. D 83 043009Google Scholar

    [95]

    Isayev A A, Yang J 2011 Phys. Rev. C 84 065802Google Scholar

    [96]

    Isayev A A, Yang J 2012 Phys. Lett. B 707 163Google Scholar

    [97]

    Isayev A A, Yang J 2013 J. Phys. G: Nucl. Part. Phys. 40 035105Google Scholar

    [98]

    Feng B, Hou D F, Ren H C, Wu P P 2010 Phys. Rev. Lett. 105 042001Google Scholar

    [99]

    Oppenheimer J R, Volkoff G M 1939 Phys. Rev. 33 374

    [100]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [101]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138Google Scholar

    [102]

    Chu P C, Chen L W, Wang X 2014 Phys. Rev. D 90 063013Google Scholar

    [103]

    Miller M C, Lamb F K, Dittmannet A J, et al. 2019 Astrophys. J. Lett. 887 L24Google Scholar

    [104]

    Doroshenko V, Suleimanov V, Pühlhofer G, Santangelo A 2022 Nat. Astron. 6 1444Google Scholar

  • 图 1  $ \varDelta = 50 $ MeV时色味锁夸克物质的能量密度随重子数密度与磁场的变化

    Figure 1.  Energy density of CFL quark matter as functions of baryon density and magnetic field with $ \varDelta = 50 $ MeV.

    图 2  $ \varDelta = 100 $ MeV时色味锁夸克物质的能量密度随重子数密度与磁场的变化

    Figure 2.  Energy density of CFL quark matter as functions of baryon density and magnetic field with $ \varDelta = 100 $ MeV.

    图 3  $ \varDelta = 50 $ MeV时色味锁夸克物质的压强随重子数密度与磁场的变化

    Figure 3.  Pressure of CFL quark matter as functions of baryon density and magnetic field with $ \varDelta = 50 $ MeV.

    图 4  $ \varDelta = 100 $ MeV时色味锁夸克物质的压强随重子数密度与磁场的变化

    Figure 4.  Pressure of CFL quark matter as functions of baryon density and magnetic field with $ \varDelta = 100 $ MeV.

    图 5  $ \varDelta = 50 $ MeV和$ \varDelta = 100 $ MeV时色味锁夸克物质的压强不对称度随磁场的变化

    Figure 5.  Pressure anisotropy of CFL quark matter as functions of magnetic field with $ \varDelta = 50, 100 $ MeV.

    图 6  $ \varDelta = 50 $ MeV和$ \varDelta = 100 $ MeV时u, d, s三味夸克的有效质量随磁场的变化规律

    Figure 6.  Equivalent quark mass for u, d, and s quarks as functions of magnetic fields B with $ \varDelta = 50 $ MeV and $ \varDelta = 100 $ MeV.

    图 7  $ \varDelta = 50 $ MeV和$ \varDelta = 100 $ MeV时u, d, s三味夸克的化学势随磁场的变化规律

    Figure 7.  Chemical potential of u, d, and s quarks as functions of magnetic fields B with $ \varDelta = 50 $ MeV and $ \varDelta = 100 $ MeV

    图 8  磁场与零磁场下色味锁相夸克星质量半径关系

    Figure 8.  Mass-radius relation of QSs with CFL quark phase under magnetic fields.

    图 9  奇异夸克星与色味锁相磁星最大质量随磁场的变化关系

    Figure 9.  Maximum star mass of magnetars as a function of magnetic field $ B_0 $ with SQM and CFL quark phase by considering transverse magnetic field orientation and longitudinal orientation.

    表 1  不同磁场方向分布情况下($ B_0 = 4\times \text{10}^{18} $G)磁星最大质量中心密度、1.4倍太阳质量潮汐形变率随Δ的变化

    Table 1.  The central density and tidal deformability of the magnetars considering “radial orientation” and “transverse orientation” at $ B_0 = 4\times \text{10}^{18} $G with g-2 within quasiparticle model with different Δ.

    $ B_{{/ /}} $ $ B_{{/ /}} $ $ B_{\perp} $ $ B_{\perp} $
    Δ/MeV 50 100 50 100
    $ n_{\mathrm{c}} $/$ \text{fm}^{-3} $ 0.95 0.82 0.91 0.8
    $ \varLambda_{1.4} $/MeV 741 1256 805 1351
    DownLoad: CSV
    Baidu
  • [1]

    Glendenning N K 2000 Compact Stars (2nd Ed.) (New York: Spinger-Verlag, Inc.

    [2]

    Weber F 1999 Pulsars as Astrophyical Laboratories for Nuclear and Particle Physics (London: IOP Publishing Ltd.

    [3]

    Lattimer J M, Prakash M 2004 Science 304 536Google Scholar

    [4]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 410 325Google Scholar

    [5]

    Demorest P 2010 Nature 467 1081Google Scholar

    [6]

    Antoniadis J 2013 Science 340 6131Google Scholar

    [7]

    Shahbaz T, Casares J 2018 Astrophys. J. 859 54Google Scholar

    [8]

    Cromartie H T, Fonseca E, Ransom S M et al. 2020 Nat. Astron. Lett. 4 72

    [9]

    Fonseca E, Cromartie H T, Pennucci T T, et al. 2021 Astrophys. J. Lett. 915 L12Google Scholar

    [10]

    Miller M C, Lamb F K, Dittmann A J, et al. 2021 Astrophys. J. Lett. 918 L28Google Scholar

    [11]

    Abbott R 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [12]

    Ivanenko D, Kurdgelaidze D F 1969 Lett. Nuovo Cimento 2 13Google Scholar

    [13]

    Itoh N 1970 Prog. Theor. Phys. 44 291Google Scholar

    [14]

    Bodmer A R 1971 Phys. Rev. D 4 1601Google Scholar

    [15]

    Witten E 1984 Phys. Rev. D 30 272Google Scholar

    [16]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379Google Scholar

    [17]

    Alcock C, Farh E, Olinto A 1986 Astrophys. J. 310 261Google Scholar

    [18]

    Weber F 2005 Prog. Part. Nucl. Phys. 54 193Google Scholar

    [19]

    Bombaci I, Parenti I, Vidana I 2004 Astrophys. J. 614 314Google Scholar

    [20]

    Staff J, Ouyed R, Bagchi M 2007 Astrophys. J. 667 340Google Scholar

    [21]

    Herzog T M, Röpke F K 2011 Phys. Rev. D 84 083002Google Scholar

    [22]

    Stephanov M A, Rajagopal K, Shuryak E V 1998 Phys. Rev. Lett. 81 4816Google Scholar

    [23]

    Terazawa H 1979 INS-Report (Tokyo: Univ. of Tokyo) p336

    [24]

    Alford M, Reddy S 2003 Phys. Rev. D 67 074024Google Scholar

    [25]

    Alford M, Jotwani P, Kouvaris C, Kundu J, Rajagopal K 2005 Phys. Rev. D 71 114011Google Scholar

    [26]

    Baldo M 2003 Phys. Lett. B 562 153Google Scholar

    [27]

    Ippolito N D, Ruggieri M, Rischke D H, Sedrakian A, Weber F 2008 Phys. Rev. D 77 023004Google Scholar

    [28]

    Lai X Y, Xu R X 2011 Res. Astron. Astrophys. 11 687Google Scholar

    [29]

    Avellar M G B de, Horvath J E, Paulucci L 2011 Phys. Rev. D 84 043004Google Scholar

    [30]

    Bonanno L, Sedrakian A 2012 A&A 539 A16Google Scholar

    [31]

    Chu P C, Wang B, Jia Y Y, Dong Y M, Wang S M, Li X H, Zhang L, Zhang X M, Ma H Y 2016 Phys. Rev. D 94 123014Google Scholar

    [32]

    Chu P C, Li X H, Wang B, Dong Y M, Jia Y Y, Wang S M, Ma H Y 2017 Eur. Phys. J. C 77 512Google Scholar

    [33]

    Chu P C, Zhou Y, Chen C, Li X H, Ma H Y 2020 J. Phys. G: Nucl. Part. Phys. 47 085201Google Scholar

    [34]

    Bailin D and Love A 1984 Phys. Rep. 107 325Google Scholar

    [35]

    Alford M G, Rajagopal K, Reddy S, Wilczek F 2001 Phys. Rev. D 64 074017Google Scholar

    [36]

    Shovkovy I A 2005 Found. Phys. 35 1309Google Scholar

    [37]

    Rajagopal K, Wilczek F 2001 Phys. Rev. L 86 3492Google Scholar

    [38]

    Alford M G, Rajagopal K, Schaefer T, Schmitt A 2008 Rev. Mod. Phys. 80 1455Google Scholar

    [39]

    Lugones G, Horvath J E 2003 Astron. Astrophys. 403 173Google Scholar

    [40]

    Horvath J E, Lugones G 2004 Astron. Astrophys. 422 L1Google Scholar

    [41]

    Woltjer L 1964 Astrophys. J. 140 1309Google Scholar

    [42]

    Mihara T A 1990 Nature 346 250Google Scholar

    [43]

    Chanmugam G 1992 Annu. Rev. Astron. Astrophys. 30 143Google Scholar

    [44]

    Lai D, Shapiro S L 1991 Astrophys. J. 383 745Google Scholar

    [45]

    Ferrer E J, Incera V, Keith J P, Portillo I, Springsteen P L 2010 Phys. Rev. C 82 065802Google Scholar

    [46]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys Rev. Lett. 79 2176Google Scholar

    [47]

    Bandyopadhyay D, Pal S, Chakrabarty S 1998 J. Phys. G: Nucl. Part. Phys. 24 1647Google Scholar

    [48]

    Menezes D P, Pinto M, Benghi, Avancini S, Providência C 2009 Phys. Rev. C 79 035807Google Scholar

    [49]

    Menezes D P, Pinto M, Benghi, Avancini S, Providência C 2009 Phys. Rev. C 80 065805Google Scholar

    [50]

    Ryu C Y, Kim K S, Cheoun Myung-Ki 2010 Phys. Rev. C 82 025804Google Scholar

    [51]

    Ryu C Y, Cheoun Myung-Ki, Kajino T, Maruyama T, Mathews Grant J 2012 Astropart. Phys. 38 25Google Scholar

    [52]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, WangN, Peng Q H 2016 Int. J. Mod. Phys. D 25(1) 1650002Google Scholar

    [53]

    Gao Z F, Wang N, Shan H, L i, X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [54]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [55]

    Yan F Z, Gao Z F, Yang W S, Dong A J 2021 Astron. Nachr. 342 249Google Scholar

    [56]

    Wang H, Gao Z F, Jia H Y, Wang N, Li X 2020 Universe 6 63Google Scholar

    [57]

    Li B P, Gao Z F 2023 Astron. Nachr. 344 e20220111

    [58]

    Deng Z L, Li X D, Gao Z F, Shao Y 2021 Astrophys. J. 909 174Google Scholar

    [59]

    G ao, Z F, Omar N, Shi X C, Wang N 2019 Astron. Nachr. 340 1030Google Scholar

    [60]

    Lander, S K 2023 Astrophys.J. 947 L16Google Scholar

    [61]

    Dong J M 2021 Mon. Not. R. Astron. Soc. 500 1505

    [62]

    Fu G Z, Xing C C, Wang N 2020 Eur. Phys. J. C 80 582Google Scholar

    [63]

    Schertler K, Greiner C, Thoma M H, Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659Google Scholar

    [64]

    Pisarski R D 1989 Nucl. Phys. A 498 423

    [65]

    Wen X J 2009 J. Phys. G: Nucl. Part. Phys. 36 025011Google Scholar

    [66]

    Zhang Z, Chu P C, Li X H, Liu H, Zhang X M 2021 Phys. Rev. D 103 103021Google Scholar

    [67]

    Chu P C, Chen L W 2014 Astrophys. J. 780 135Google Scholar

    [68]

    Chu P C 2018 Phys. Lett. B 778 447Google Scholar

    [69]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 103001Google Scholar

    [70]

    Chodos A, Jaffe R L, Ohnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [71]

    Alford M, Braby M, Paris M, Reddy S 2005 Astrophys. J. 629 969Google Scholar

    [72]

    Rehberg P, Klevansky S P, Hüfner J 1996 Phys. Rev. C 53 410Google Scholar

    [73]

    Hanauske M, Satarov L M, Mishustin I N, Stocker H, Greiner W 2001 Phys. Rev. D 64 043005Google Scholar

    [74]

    Rüster S B, Rischke D H 2004 Phys. Rev. D 69 045011Google Scholar

    [75]

    Menezes D P, Providencia C, Melrose D B 2006 J. Phys. G 32 1081Google Scholar

    [76]

    Chao J Y, Chu P C, Huang M 2013 Phys. Rev. D 88 054009Google Scholar

    [77]

    Chu P C, Wang X, Chen L W, Huang M 2015 Phys. Rev. D 91 023003Google Scholar

    [78]

    Chu P C, Wang B, Ma H Y, Dong Y M, Chang S L, Zheng C H, Liu J T, Zhang X M 2016 Phys. Rev. D 93 094032Google Scholar

    [79]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 083019Google Scholar

    [80]

    Roberts C D, Williams A G 1994 Prog. Part. Nucl. Phys. 33 477Google Scholar

    [81]

    Zong H S, Chang L, Hou F Y, Sun W M, Liu Y X 2005 Phys. Rev. C 71 015205Google Scholar

    [82]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [83]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801Google Scholar

    [84]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [85]

    Li A, Peng G X, Lu J F 2011 Res. Astron. Astrophys. 11 482Google Scholar

    [86]

    Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659

    [87]

    Schertler K, Greiner C, Sahu P K, Thoma M H 1998 Nucl. Phys. A 637 451

    [88]

    Alford M, Kouvaris C, Rajagopal K 2005 Phys. Rev. D 71 054009Google Scholar

    [89]

    Giannakis I, Hou D, Ren H C, et al. 2004 Phys. Rev. Lett. 93 232301Google Scholar

    [90]

    董爱军, 高志福, 杨晓峰等 2023 72 030502Google Scholar

    Dong A J, Gao Z F, Yang X F, et al 2023 Acta Phys. Sin. 72 030502Google Scholar

    [91]

    Ferrer E J, Vivian de la Incera 2005 Phys. Rev. Lett. 95 152002Google Scholar

    [92]

    Ferrer E J, Vivian de la Incera, Cristina Manuel 2006 Nucl. Phys. B 747 88Google Scholar

    [93]

    Feng B, Ferrer E J, Vivian de la Incera 2011 Nucl. Phys. B 853 213Google Scholar

    [94]

    Paulucci L, Ferrer E J, Vivian de la Incera, Horvath J E 2011 Phys. Rev. D 83 043009Google Scholar

    [95]

    Isayev A A, Yang J 2011 Phys. Rev. C 84 065802Google Scholar

    [96]

    Isayev A A, Yang J 2012 Phys. Lett. B 707 163Google Scholar

    [97]

    Isayev A A, Yang J 2013 J. Phys. G: Nucl. Part. Phys. 40 035105Google Scholar

    [98]

    Feng B, Hou D F, Ren H C, Wu P P 2010 Phys. Rev. Lett. 105 042001Google Scholar

    [99]

    Oppenheimer J R, Volkoff G M 1939 Phys. Rev. 33 374

    [100]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [101]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138Google Scholar

    [102]

    Chu P C, Chen L W, Wang X 2014 Phys. Rev. D 90 063013Google Scholar

    [103]

    Miller M C, Lamb F K, Dittmannet A J, et al. 2019 Astrophys. J. Lett. 887 L24Google Scholar

    [104]

    Doroshenko V, Suleimanov V, Pühlhofer G, Santangelo A 2022 Nat. Astron. 6 1444Google Scholar

  • [1] Ruan Li-Juan, Xu Zhang-Bu, Yang Chi. Global polarization of hyperons and spin alignment of vector mesons in quark matters. Acta Physica Sinica, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [2] Dong Ai-Jun, Gao Zhi-Fu, Yang Xiao-Feng, Wang Na, Liu Chang, Peng Qiu-He. Modified pressure of relativistic electrons in a superhigh magnetic field. Acta Physica Sinica, 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [3] Zhou Shu-Ying, Shen Wan-Ping, Mao Hong. Analytical solution of surface tension of quark-hadron phase transition. Acta Physica Sinica, 2022, 71(21): 211101. doi: 10.7498/aps.71.20220659
    [4] Wang Yi-Nong, Chu Peng-Cheng, Jiang Yao-Yao, Pang Xiao-Di, Wang Sheng-Bo, Li Pei-Xin. Proto-magnetars within quasiparticle model. Acta Physica Sinica, 2022, 71(22): 222101. doi: 10.7498/aps.71.20220795
    [5] Gong Wu-Kun, Guo Wen-Jun. Hadron-quark deconfinement phase transition in hybrid stars. Acta Physica Sinica, 2020, 69(24): 242101. doi: 10.7498/aps.69.20200925
    [6] Shen Wan-Ping, You Shi-Jia, Mao Hong. Phase structure and surface tension in quark meson model. Acta Physica Sinica, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [7] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [8] Jirimutu, Aodeng, Xue Kang. Construction of Breit quark potential in coordinate space and mass splits of meson and quarkonium. Acta Physica Sinica, 2018, 67(9): 091201. doi: 10.7498/aps.67.20172155
    [9] Zhao Yun-Hui, Hai Wen-Hua, Zhu Qian-Quan. Multi-order corrections of variational-integral perturbation for heavy quarkonium. Acta Physica Sinica, 2009, 58(2): 734-739. doi: 10.7498/aps.58.734
    [10] Huang Jin-Shu, Luo Peng-Hui, Lu Gong-Ru. Bottom quark pair production in γγ collision. Acta Physica Sinica, 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [11] Lai Xiang-Jun, Luo Zhi-Quan, Liu Jing-Jing, Liu Hong-Lin. Quark phase transition in supernova and the effect of quark mass on the process. Acta Physica Sinica, 2008, 57(3): 1535-1541. doi: 10.7498/aps.57.1535
    [12] Chen Hong, Mei Hua, Shen Peng-Nian, Jiang Huan-Qing. Heavy quarkonium mass spectra in a relativistic quark model. Acta Physica Sinica, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [13] He Ze-Jun, Long Jia-Li, Ma Guo-Liang, Ma Yu-Gang, Zhang Jia-Ju, Liu Bo. Intermediate mass dilepton production in a chemically non-equilibrated quark-glu on matter. Acta Physica Sinica, 2003, 52(11): 2831-2835. doi: 10.7498/aps.52.2831
    [14] He Ze-Jun, Zhou Wen-Jie, Jiang Wei-Zhou, Zhang Jia-Ju, Liu Bo. . Acta Physica Sinica, 2002, 51(6): 1312-1316. doi: 10.7498/aps.51.1312
    [15] DAI ZI-GAO, LU TAN, PENG QIU-HE. PHASE TRANSITION OF NONSTRANGE-STRANGE QUARK MATTER IN THE INTERIOR OF A NEUTRON STAR. Acta Physica Sinica, 1993, 42(8): 1210-1215. doi: 10.7498/aps.42.1210
    [16] BAO SHU-QING, XUE XIAO-ZHOU. SU(10) CHIRAL GRAND UNIFIED PREON MODEL. Acta Physica Sinica, 1988, 37(2): 347-352. doi: 10.7498/aps.37.347
    [17] XIE FENG-XIAN. CALCULATION OF THE SPECTRA FOR TOPPONIUM WITH A NONZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1987, 36(6): 778-784. doi: 10.7498/aps.36.778
    [18] HE QI-ZHI, YANG JIAN-HUA, CHENG GUO-JUN, YANG RONG-FU. A SEARCH FOR π-N INTERACTION BY QUARK MODEL. Acta Physica Sinica, 1985, 34(1): 1-9. doi: 10.7498/aps.34.1
    [19] HE ZUO-XIU, LIN DA-HANG, ZHAO PEI-ZHEN. QUARKONIUM POTENTIAL MODEL WITH A NON-ZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1982, 31(4): 525-531. doi: 10.7498/aps.31.525
    [20] WANG JIA-ZHU, BI PIN-ZHEN, YIN PENG-CHENG. PROLATE ELLIPSOLIDAL BAG MODEL FOR THE HADRON WITH HEAVY QUARKNIUM. Acta Physica Sinica, 1981, 30(12): 1707-1712. doi: 10.7498/aps.30.1707
Metrics
  • Abstract views:  1899
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2023
  • Accepted Date:  21 November 2023
  • Available Online:  08 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回
Baidu
map