Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Depiction of Hamiltonian PT-symmetry

Zhang Hui-Jie He Kan

Citation:

Depiction of Hamiltonian PT-symmetry

Zhang Hui-Jie, He Kan
cstr: 32037.14.aps.73.20230458
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The theory of PT-symmetry describes the non-hermitian Hamiltonian with real energy levels, which means that the Hamiltonian H is invariant neither under parity operator P, nor under time reversal operator T, PTH = H. Whether the Hamiltonian is real and symmetric is not a necessary condition for ensuring the fundamental axioms of quantum mechanics: real energy levels and unitary time evolution. The theory of PT-symmetry plays a significant role in studying quantum physics and quantum information science, Researchers have paid much attention to how to describe PT-symmetry of Hamiltonian. In the paper, we define operator F according to the PT-symmetry theory and the normalized eigenfunction of Hamiltonian. Then we first describe the PT-symmetry of Hamiltonian in dimensionless cases after finding the features of commutator and anti-commutator of operator CPT and operator F. Furthermore, we find that this method can also quantify the PT-symmetry of Hamiltonian in dimensionless case. I(CPT, F) = ||[CPT, F]||CPT represents the part of PT-symmetry broken, and J(CPT, F) = ||[CPT, F]||CPT represents the part of PT-symmetry. If I(CPT, F) = ||[CPT, F]||CPT = 0, Hamiltonian H is globally PT-symmetric. Once I(CPT, F) = ||[CPT, F]||CPT ≠ 0, Hamiltonian H is PT-symmetrically broken. In addition, we propose another method to describe PT-symmetry of Hamiltonian based on real and imaginary parts of eigenvalues of Hamiltonian, to judge whether the Hamiltonian is PT symmetric. ReF = 1/4||(CPTF+F)||CPT represents the sum of squares of real part of the eigenvalue En of Hamiltonian H, ImF = 1/4||(CPTFF)||CPT is the sum of imaginary part of the eigenvalue En of a Hamiltonian H. If ImF = 0, Hamiltonian H is globally PT-symmetric. Once ImF ≠ 0, Hamiltonian H is PT-symmetrically broken. ReF = 0 implies that Hamiltonian H is PT-asymmetric, but it is a sufficient condition, not necessary condition. The later is easier to realize in the experiment, but the studying conditions are tighter, and it further requires that CPT $\phi_n $(x) = $\phi_n $(x). If we only pay attention to whether PT-symmetry is broken, it is simpler to use the latter method. The former method is perhaps better to quantify the PT-symmetrically broken part and the part of local PT-symmetry.
      Corresponding author: He Kan, hekanquantum@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12271394) and the State Key Development Program of Shanxi Province, China (Grant No. 202102010101004).
    [1]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [2]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [3]

    Bender C M 2005 Contemp. Phys. 46 277Google Scholar

    [4]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [5]

    Wu T T 1959 Phys. Rev. 115 1390Google Scholar

    [6]

    Brower R C, Furman M A, Moshe M 1978 Phys. Lett. B 76 213Google Scholar

    [7]

    Fisher M E 1978 Phys. Rev. Lett. 40 1610Google Scholar

    [8]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [9]

    Bender C M, Gianfreda M, Ozdemir S K, Peng B, Yang L 2013 Phys. Rev. A 88 062111Google Scholar

    [10]

    Croke S 2015 Phys. Rev. A 91 052113Google Scholar

    [11]

    Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar

    [12]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Natural. Phys. 14 1Google Scholar

    [13]

    Pi J H, Sun N N, Lü R 2020 Commun. Theor. Phys. 72 4Google Scholar

    [14]

    Yu S, Meng Y, Tang J S, Xu X Y, Wang Y T, Yin P, Guo G C 2020 Phys. Rev. Lett. 125 240506Google Scholar

    [15]

    Nielsen M A, Chuang I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p76

    [16]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [17]

    梁昆淼 2010 数学物理方法(第四版) (北京: 高等教育出版社) 第82—89页

    Liang K M 2010 Methods of Mathematical Physics (Vol. 4) (Beijing: Higher Education Press) pp82–89

    [18]

    Samsonov B F, Roy P 2005 J. Phys. A Math. Gen. 38 L249Google Scholar

    [19]

    Bender C M, Brody D C, Jones H F 2004 Phys. Rev. Lett. 93 251601Google Scholar

  • 表 1  比较刻画哈密顿量H PT对称性的两种方法

    Table 1.  Compare two depiction methods of PT-symmetry of Hamiltonian H

    第一种方法 第二种方法
    H是全局PT对称 J(CPT, F) ReF
    H是局部PT对称 J(CPT, F), I(CPT, F) ImF
    H是PT对称完全破缺 I(CPT, F) ImF
    DownLoad: CSV
    Baidu
  • [1]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [2]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [3]

    Bender C M 2005 Contemp. Phys. 46 277Google Scholar

    [4]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [5]

    Wu T T 1959 Phys. Rev. 115 1390Google Scholar

    [6]

    Brower R C, Furman M A, Moshe M 1978 Phys. Lett. B 76 213Google Scholar

    [7]

    Fisher M E 1978 Phys. Rev. Lett. 40 1610Google Scholar

    [8]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [9]

    Bender C M, Gianfreda M, Ozdemir S K, Peng B, Yang L 2013 Phys. Rev. A 88 062111Google Scholar

    [10]

    Croke S 2015 Phys. Rev. A 91 052113Google Scholar

    [11]

    Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar

    [12]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Natural. Phys. 14 1Google Scholar

    [13]

    Pi J H, Sun N N, Lü R 2020 Commun. Theor. Phys. 72 4Google Scholar

    [14]

    Yu S, Meng Y, Tang J S, Xu X Y, Wang Y T, Yin P, Guo G C 2020 Phys. Rev. Lett. 125 240506Google Scholar

    [15]

    Nielsen M A, Chuang I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p76

    [16]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [17]

    梁昆淼 2010 数学物理方法(第四版) (北京: 高等教育出版社) 第82—89页

    Liang K M 2010 Methods of Mathematical Physics (Vol. 4) (Beijing: Higher Education Press) pp82–89

    [18]

    Samsonov B F, Roy P 2005 J. Phys. A Math. Gen. 38 L249Google Scholar

    [19]

    Bender C M, Brody D C, Jones H F 2004 Phys. Rev. Lett. 93 251601Google Scholar

Metrics
  • Abstract views:  6045
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2023
  • Accepted Date:  17 December 2023
  • Available Online:  22 December 2023
  • Published Online:  20 February 2024
  • /

    返回文章
    返回
    Baidu
    map