搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适于大尺度复杂纳米体系材料模拟的半经验哈密顿方法

虞明 吴式玉

引用本文:
Citation:

一种适于大尺度复杂纳米体系材料模拟的半经验哈密顿方法

虞明, 吴式玉

Material modeling for large scale and complex nanostructures: A semi-empirical Hamiltonian method

Yu Ming, Wu Shi-Yu
PDF
导出引用
  • 本文综述介绍了近来发展的一种具有可靠性、普适性和预测性的半经验哈密顿方法. 该哈密顿在原子轨道的线性组合(LCAO)框架下同时引入了电荷自洽及环境因素(SCED), 称之为SCED-LCAO哈密顿. 由于SECD-LCAO 哈密顿囊括了电荷自洽重组、电子屏蔽效应以及多体环境的影响, 使得该方法可以更加准确地描述在复杂结构重组中化学键的成键与断键过程. 其动力学计算可用于模拟大尺度复杂纳米体系的结构特性、电子性能以及复杂结构的重组过程. 我们已经用此方法成功地解释了不同种类碳团簇纳米结构的相对稳定性和bucky-diamond结构碳团簇的热力学相变, 揭示了碳管生长的初始机理, 系统地研究了碳化硅纳米线的构型与能量之间的关系及其电子性能, 发现了碳化硅笼状结构的特征, 尤其是碳化硅笼状结构的动力学自动组装功能, 并预示了bucky-diamond结构的碳化硅团簇存在的可能性. 最近, 该方法引入了与环境关联的轨道占据因素, 并成功地运用到研究具有三价电子特性的多构硼元素体系中, 准确地描述了硼元素的复杂化学成键特性、同类异性结构以及不同种类硼团簇纳米结构的相对稳定性.
    The advent of the era of nano-structures has also brought about critical issues regarding the determination of stable structures and the associated properties of such systems. From the theoretical perspective, it requires to consider systems of sizes of up to tens of thousands atoms to obtain a realistic picture of thermodynamically stable nano-structure. This is certainly beyond the scope of DFT-based methods. On the other hand, conventional semi-empirical Hamiltonians, which are capable of treating systems of those sizes, do not possess the rigor and accuracy that can lead to a reliable determination of stable structures in nano-systems. During the last dozen years, extensive effort has been devoted to developing methods that can handle systems of nano-sizes on the one hand, while possess first principles-level accuracy on the other. In this review, we present just such a recently developed and well-tested semi-empirical Hamiltonian, referred in the literature as the SCED-LCAO Hamiltonian. Here SCED is the acronym for self-consistent/environment-dependent while LCAO stands for linear combination of atomic orbitals. Compared to existing conventional two-center semiempirical Hamiltonians, the SCED-LCAO Hamiltonian distinguishes itself by remedying the deficiencies of conventional two-center semi-empirical Hamiltonians on two important fronts: the lack of means to determine charge redistribution and the lack of involvement of multi-center interactions. Its framework provides a scheme to self-consistently determine the charge redistribution and includes multi-center interactions. In this way, bond-breaking and bond-forming processes associated with complex structural reconstructions can be described appropriately. With respect to first principles methods, the SCED-LCAO Hamiltonian replaces the time-consuming energy integrations of the self-consistent loop in first principles methods by simple parameterized functions, allowing a speed-up of the self-consistent determination of charge redistribution by two orders of magnitudes. Thus the method based on the SCED-LCAO is no more cumbersome than the conventional semi-empirical methods on the one hand and can achieve the first principle-level accuracy on the other. The parameters and parametric functions for SCED-LCAO Hamiltonian are carefully optimized to model electron-electron correlations and multi-center interactions in an efficient fitting process including a global optimization scheme. To ensure the transferability of the Hamiltonian, the data base chosen in the fitting process contains large amount of physical properties, including (i) the binding energies, the bond lengths, and the symmetries of various clusters covering not only the ground state but also the excited phases, (ii) the binding energies as a function of atomic volume for various crystal phases including also the high pressure phases, and (iii) the electronic band structures of the crystalline systems. In particular, the data bases for excited phases of clusters and high pressure phases in bulk systems are more important when performing molecular dynamics simulations where correct transferable phases are required, such as the excited phases. The validity and the robustness of the SCED-LCAO Hamiltonian have been tested for more complicated Si-, C-, and B-based systems. The success of the SCED-LCAO Hamiltonian will be elucidated through the following applications: (i) the phase transformations of carbon bucky-diamond clusters upon annealing, (ii) the initial stage of growth of single-wall carbon nanotubes (SWCNTs), (iii) the discovery of bulky-diamond SiC clusters, (iv) the morphology and energetics of SiC nanowires (NWs), and (v) the self-assembly of stable SiC based caged nano-structures. A recent upgrade of the SCED-LCAO Hamiltonian, by taking into account the effect on the atomic orbitals due to the atomic aggregation, will also be discussed in this review. This upgrade Hamiltonian has successfully characterized the electron-deficiency in trivalent boron element captured complex chemical bonding in various boron allotropes, which is a big challenge for semi-empirical Hamiltonians.
      通信作者: 虞明, m0yu0001@louisville.edu
    • 基金项目: 美国国家自然科学基金(批准号: NSF-DMR-0112824)、美国能源部研究基金(批准号: DE-FG02-00ER45832)、美国陆军(SMDC)研究基金(批准号: W9113M-04-C-0024) 和美国肯塔基州科学及工程基金(批准号: KSEF-753-RED-007)资助的课题.
      Corresponding author: Yu Ming, m0yu0001@louisville.edu
    • Funds: Project supported by the US National Science Fundation (Grant No. NSF-DMR-0112824), the US Department of Energy (Grant No. DE-FG02-00ER45832), the US Army (SMDC) (Grant No. W9113M-04-C-0024), and the Kentucky Science and Engineering Fundation (Grant No. KSEF-753-RED-007).
    [1]

    Hehre W J, Radom L, Schleyer P V R, Pople J A 1986 Ab Initio Molecular Orbital Theory (New York: John Wiley & Sons)

    [2]

    Szabo A, Ostlund N S 1996 Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (New York, Mineola: Dover Publications Inc.)

    [3]

    Jensen F 2006 Introduction to Computational Chemistry (New York: John Wiley & Sons)

    [4]

    Cramer C J 2004 Essentials of Computational Chemistry: Theories and Models (Chichester, England: John Wiley & Sons)

    [5]

    Møller Chr, Plesset M S 1934 Phys. Rev. 46 618

    [6]

    Coester F 1958 Nucl. Phys. 7 421

    [7]

    Coester F, Kmmel H 1960 Nucl. Phys. 17 477

    [8]

    Čižek J 1966 J. Chem. Phys. 45 4256

    [9]

    Kmmel H 1971 Nucl. Phys. A 176 205

    [10]

    Kmmel H, Lhrmann K H 1972 Nucl. Phys. A 191 525

    [11]

    Svensson M, Humbel S, Forese R D J, Matsubara T, Sieber S, Morokuma K 1996 J. Phys. Chem. 100 19357

    [12]

    Dapprich S, Komáromi I, Byun K S, Morokuma K, Frisch M J 1999 J. Molecular Structure (Theochem) 46-462 1

    [13]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [14]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [15]

    Parr R G, Yang W 1989 Density Functional Theory of Atoms and Molecules (Oxford: Oxford University Press)

    [16]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Kresse G, Furthnuller J 1996 Comput. Mater. Sci. 6 15

    [19]

    Pariser R, Parr R G 1953 J. Chem. Phys. 21 466

    [20]

    Pariser R, Parr R G 1953 J. Chem. Phys. 21 767

    [21]

    Pople J A 1953 Trans. Faraday Soc. 49 1375

    [22]

    Dewar M J S, Thiel W 1977 J. Am. Chem. Soc. 99 4899

    [23]

    Majewski J, Vogl P 1987 Phys. Rev. B 35 9666

    [24]

    Goringe C M, Bowler D R, Hernández E 1997 Rep. Prog. Phys. 60 1447

    [25]

    Andriotis A N, Menon M 1999 Phys. Rev. B 59 15942

    [26]

    Frauenheim Th, Weich F, Kohler Th, Uhlmann S, Porezag D, Seifert G 1995 Phys. Rev. B 52 11492

    [27]

    laudeck P, Frauenheim Th, Porezag D, Seifert G, Fromm E 1992 J. Phys.: Condens. Matter 4 6389

    [28]

    Frauenheim Th, Seifert G, Elstner M, Hajnal Z, Jungnickel G, Porezag D, Suhai S, Scholz R 2000 Phys. Stat. Sol. (b) 217 41

    [29]

    Menon M, Subbaswamy K R 1997 Phys. Rev. B 55 9231

    [30]

    Tang M S, Wang C Z, Chan C T, Ho K M 1996 Phys. Rev. B 53 979

    [31]

    Mehl M J, Papaconstantopoulos D A 1994 Phys. Rev. B 50 14694

    [32]

    Ernstein N, Kairas E 1997 Phys. Rev. B 56 10488

    [33]

    Esfarjani K, Kawazoe Y 1998 J. Phys.: Condens. Matter 10 8257

    [34]

    Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408

    [35]

    Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1

    [36]

    Goedecker S 1999 Rev. Mod. Phys. 71 1085

    [37]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [38]

    Artacho E, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Sánchez-Portal D, Soler J M 2005 Handbook of Materials Modeling (Netherland: Springer) p77

    [39]

    Hernández E, Gillan M J, Goring C M 1996 Phys. Rev. B 53 7147

    [40]

    Bowler D R, Miyazaki T, Gillan M J 2002 J. Phys.: Condens. Matter 14 2781

    [41]

    BowlerD R, Choudhury R, Gillan M J, Miyazaki T 2006 Phys. Status Solidi (b) 243 989

    [42]

    Gillan M, Bowler D R, Torralba A, Miyazaki T 2007 Comput. Phys. Commun. 177 14

    [43]

    Ozaki T 2006 Phys. Rev. B 74 245101

    [44]

    Haynes P D, Shylaris C K, Mostofi A A, Payne M C 2006 Phys. Status Solidi (b) 243 2489

    [45]

    Tsuchida E 2007 J. Phys. Soc. Japan 76 034708

    [46]

    Takayama R, Hoshi T, Sogabe T, Zhang S L, Fujiwara T 2007 Phys. Rev. B 76 115327

    [47]

    de Pablo P J, Moreno-Herrero F, Colchero J, Herrero J G, Herrero P, Baró A M, Ordejón P, Soler J M, Artacho E 2000 Phys. Rev. Lett. 85 4992

    [48]

    Otsuka T, Miyazaki T, Ohno T, Bowler D R, Gillan M J 2008 J. Phys.: Condens. Matter 20 294201

    [49]

    Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708

    [50]

    Chaudhri I, Yu M, Jayanthi C S, Wu S Y 2014 J. Phys. Conden. Matter 26 115301

    [51]

    Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57

    [52]

    Xin Z H, Zhang C Y, Yu M, Jayanthi C S, Wu S Y 2014 Computat. Mater. Sci. 84 49

    [53]

    Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705

    [54]

    Tandy P, Yu M, Leahy C, Jayanthi C S, Wu S Y 2015 J. Chem. Phys. 142 124106

    [55]

    Max B, Robert O J 1927 Annalen der Physik 389 457

    [56]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision C.02, 2004 (Wallingford CT: Gaussian, Inc.)

    [57]

    Mailhiot C, McMahan A K 1991 Phys. Rev. B 44 11578

    [58]

    Yin M T, Cohen M L 1982 Phys. Rev. B 26 5668

    [59]

    Wang S Q, Ye H Q 2003 J. Phys: Condens. Matter 15 5307

    [60]

    McSkimin H J, Andreatch P 1972 J. Appl. Phys. 43 2944

    [61]

    Dargys A, Kundrotas J 1994 Handbook on Physical Properties of Ge, Si, GaAs and InP (Vilnius: Science and Encyclopedia Publishers)

    [62]

    Papaconstantopoulos D A, Mehl M J, Erwin S C, Pederson M R, 1998 Tight-Binding Approach to Computational Materials Science, edited by Turchi P E A, Gonis A, and Colombo L, MRS Symposia Proceedings 491 (Pittsburg: Materials Research Society) p221

    [63]

    Bermstein N, Mehl M J, Papaconstantopoulos D A, Papanicolaou N I, Bazant M Z, Kaxiras E 2000 Phys. Rev. B 62 4477

    [64]

    Feldman J L, Bernstein N, Papaconstantopoulos D A, Mehl M J 2004 Phys. Rev. B 70 165201

    [65]

    Menon M, Subbaswamy K R 1993 Phys. Rev. B 47 12754

    [66]

    Menon M, Subbaswamy K R 1994 Phys. Rev. B 50 11577

    [67]

    ernstein N, Kaxiras E 1997 Phys. Rev. B 56 10488

    [68]

    Northrup J E 1993 Phys. Rev. B 47 10032

    [69]

    Zhu Z, Shima N, Tsukada M 1989 Phys. Rev. B 40 11868

    [70]

    Chadi D J 1979 Phys. Rev. Lett. 43 43

    [71]

    Chadi D J 1979 J. Vac. Sci. Technol. 16 1290

    [72]

    Cho K, Kaxiras E 1997 Europhys. Lett. 39 287

    [73]

    Cho K, Kaxiras E 1998 Surf. Sci. 396 L261

    [74]

    Takayanagi K, Tanishiro Y, Takahashi S, Takahashi M 1985 Surf. Sci. 164 367

    [75]

    Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S 1985 J. Vac. Sci. Technol. A 3 1502

    [76]

    Chang C M, Wei C M 2003 Phys. Rev. B 67 033309

    [77]

    Sato T, Kitamura S, Iwatsuki M 2000 J. Vac. Sci. Technol. A 18 960

    [78]

    Sato T, Kitamura S, Iwatsuki M 2000 Surf. Sci. 445 130

    [79]

    Hwang I S, Ho M S, Tsong T T 1999 Phys. Rev. Lett. 83 120

    [80]

    Raty J Y, Galli G, Bostedt C, van Buuren T W, Terminello L J 2003 Phys. Rev. Lett. 90 037401

    [81]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [82]

    Laasonen K, Car R, Lee C, Vanderbilt D 1991 Phys. Rev. B 43 6796

    [83]

    Laasonen K, Pasquarello A, Lee C, Car R, Vanderbilt D 1993 Phys. Rev. B 47 10142

    [84]

    Wang Yue, Perdew John P 1991 Phys. Rev. B 44 13298

    [85]

    Jayanthi C S, Wu S Y, Cocks J, Luo N S, Xie Z L, Menon M, Yang G 1998 Phys. Rev. B 57 3799

    [86]

    Wu S Y, Jayanthi C S 2002 Phys. Report 358 1

    [87]

    Tchernatinsky A, Leahy C, Migas D, Yu M, Jayanthi C S, Wu S Y 2005 Bull. Am. Phys. Soc. 50 1

    [88]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [89]

    Pérez-Garrido A 2000 Phys. Rev. B 62 6979

    [90]

    Mykhaylyk O O, Solonin Y, Batchelder D, Brydson R 2005 J. Appl. Phys. 97 074302

    [91]

    Kuzentsov V L, Butenko Y V 2006 Ultrananocrystalline Diamond Synthesis, Properties, and Applications (edited by Shenderova O A, Gruen D M) (New York: William Andrew Publishing) p405

    [92]

    Tian W Q, Yu M, Leahy C, Jayanthi C S, Wu S Y 2009 J. Computat. Theor. Nanosci. 6 390

    [93]

    Journet C, Maser W K, Bernier P, Loiseau A, de la Lamy C M, Lefrant S, Deniard P, Lee R, Fischer J E 1997 Nature 388 756

    [94]

    Dai H, Rinzler A G, Nikolaev P, Thess A, Colbert D T, Smalley R E 1996 Chem. Phys. Lett. 260 471

    [95]

    Cassell A M, Raymakers J A, Kong J, Dai H 1999 J. Phys. Chem. B 103 6484

    [96]

    Franklin N R, Li Y, Chen R J, Jave A, Dai H 2001 Appl. Phys. Lett. 79 4571

    [97]

    Maruyama S, Kojina R, Miyauchi Y, Chiashi S, Kohno M 2002 Chem. Phys. Lett. 360 229

    [98]

    Bronikowski M J, Willis P A, Colbert D T, Smith K A, Smalley R E 2001 J. Vac. Sci. Technol. A 19 1800

    [99]

    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler S G, Colbert D T, Scuseria G E, Tománek D, Fischer J E, Smalley R E 1996 Science 273 483

    [100]

    Takagi D, Homma Y, Hibio H, Suzuki S, Kobayashi Y 2006 Nano Lett. 6 2642

    [101]

    Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Lo Y 2006 Nano. Lett. 6 2928

    [102]

    Sharma R, Rez P, Treacy M M J, Stuart S J 2005 J. Electron Microscopy 54 231

    [103]

    Kumar M, Ando Y 2010 J. Nanosci. Nanotechnol. 6 3739

    [104]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [105]

    Baker R T K, Baker M A, Harris P S, Feates F S, Waite R J 1972 J. Catal. 26 51

    [106]

    Takagi D, Kobayashi Y, Homma Y 2009 J. Am. Chem. Soc. 131 6922

    [107]

    Takagi D, Homma Y, Hibio H, Suzuki S, Kobayashi Y 2007 Nano Lett. 7 2272

    [108]

    Zhu Z, Lu Y, Qiao D, Bai S, Hu T, Li L, Zheng J 2005 J. Am. Chem. Soc. 127 15698

    [109]

    Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C 2001 Phys. Rev. Lett. 87 275504

    [110]

    Charlier J C, de Vita A, Blase X, Car R 1997 Science 275 646

    [111]

    Lee Y H, Kim S G, Tománek D 1997 Phys. Rev. Lett. 78 2393

    [112]

    Raty J Y, Gygi F, Galli G 2005 Phys. Rev. Lett. 95 096103

    [113]

    Fan X, Buczko R, Puretzky A A, Geohegan D B, Howe J Y, Pantelides S T, Pennycook S J 2003 Phys. Rev. Lett. 90 145501

    [114]

    Kanzow H, Ding A 1999 Phys. Rev. B 60 11180

    [115]

    Ding F, Rosén A, Bolton K 2004 Chem. Phys. Lett. 393 309

    [116]

    Shibuta Y, Maruyama S 2003 Eat Transfer-Asian Research 32 690

    [117]

    Shibuta Y, Maruyama S 2003 Chem. Phys. Lett. 382 381

    [118]

    Shibuta Y, Maruyama S 2004 Thermal Sci. Engineer. 12 79

    [119]

    Shibuta Y, Elliott J A 2006 Chem. Phys. Lett. 427 365

    [120]

    Shibuta Y, Maruyama S 2007 Computat. Mater. Sci. 39 842

    [121]

    Elliott J A, Hamm M, Shibuta Y 2009 J. Chem. Phys. 130 034704

    [122]

    Maiti A, Brabec C J, Roland C, Bernholc J 1995 Phys. Rev. B 52 14850

    [123]

    Maiti A, Brabec C J, Bernholc J 1997 Phys. Rev. B 55 R6097

    [124]

    Andriotis A N, Menon M, Froudakis G 2000 Phys. Rev. Lett. 85 3193

    [125]

    Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407

    [126]

    Matsubara M, Massobrio C 2005 J. Phys. Chem. A 109 4415

    [127]

    Matsubara M, Kortus J, Parlebas J C, Massobrio C 2006 Phys. Rev. Lett. 96 155502

    [128]

    Huda M N, Ray A K 2008 Chem. Phys. Lett. 457 124

    [129]

    Wang R X, Zhang J D, Liu C B 2005 Chem. Phys. Lett. 411 333

    [130]

    Pochet P, Genovese L, Caliste D, Rousseau I, Goedecker S, Deutsch T 2010 Phys. Rev. B 82 035431

    [131]

    Gleb P, Natalia D, Elena B, Richard W, Leonid D 2011 Scientific Reports 1 96

    [132]

    Piazza Zachary A, Hi H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nature Commun. 5 3113

    [133]

    Gonzalez S N, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804

    [134]

    Gopakumar G, Nguyen M T, Ceulemans A 2008 Chem. Phys. Lett. 450 175

    [135]

    Ceulemans A, Tshishimbi J, Gopakumar G, Nguyen M T 2008 Chem. Phys. Lett. 461 226

    [136]

    Tunna B, Pederson Mark R, Zope Rajendra R 2008 Phys. Rev. B 78 045408

    [137]

    De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S 2011 Phys. Rev. Lett. 106 225502

    [138]

    Gunasinghe R N, Kah C B, Quarles K D, Wang X Q 2011 Appl. Phys. Lett. 98 261906

    [139]

    Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I 2008 Phys. Rev. Lett. 100 159901

  • [1]

    Hehre W J, Radom L, Schleyer P V R, Pople J A 1986 Ab Initio Molecular Orbital Theory (New York: John Wiley & Sons)

    [2]

    Szabo A, Ostlund N S 1996 Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (New York, Mineola: Dover Publications Inc.)

    [3]

    Jensen F 2006 Introduction to Computational Chemistry (New York: John Wiley & Sons)

    [4]

    Cramer C J 2004 Essentials of Computational Chemistry: Theories and Models (Chichester, England: John Wiley & Sons)

    [5]

    Møller Chr, Plesset M S 1934 Phys. Rev. 46 618

    [6]

    Coester F 1958 Nucl. Phys. 7 421

    [7]

    Coester F, Kmmel H 1960 Nucl. Phys. 17 477

    [8]

    Čižek J 1966 J. Chem. Phys. 45 4256

    [9]

    Kmmel H 1971 Nucl. Phys. A 176 205

    [10]

    Kmmel H, Lhrmann K H 1972 Nucl. Phys. A 191 525

    [11]

    Svensson M, Humbel S, Forese R D J, Matsubara T, Sieber S, Morokuma K 1996 J. Phys. Chem. 100 19357

    [12]

    Dapprich S, Komáromi I, Byun K S, Morokuma K, Frisch M J 1999 J. Molecular Structure (Theochem) 46-462 1

    [13]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [14]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [15]

    Parr R G, Yang W 1989 Density Functional Theory of Atoms and Molecules (Oxford: Oxford University Press)

    [16]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Kresse G, Furthnuller J 1996 Comput. Mater. Sci. 6 15

    [19]

    Pariser R, Parr R G 1953 J. Chem. Phys. 21 466

    [20]

    Pariser R, Parr R G 1953 J. Chem. Phys. 21 767

    [21]

    Pople J A 1953 Trans. Faraday Soc. 49 1375

    [22]

    Dewar M J S, Thiel W 1977 J. Am. Chem. Soc. 99 4899

    [23]

    Majewski J, Vogl P 1987 Phys. Rev. B 35 9666

    [24]

    Goringe C M, Bowler D R, Hernández E 1997 Rep. Prog. Phys. 60 1447

    [25]

    Andriotis A N, Menon M 1999 Phys. Rev. B 59 15942

    [26]

    Frauenheim Th, Weich F, Kohler Th, Uhlmann S, Porezag D, Seifert G 1995 Phys. Rev. B 52 11492

    [27]

    laudeck P, Frauenheim Th, Porezag D, Seifert G, Fromm E 1992 J. Phys.: Condens. Matter 4 6389

    [28]

    Frauenheim Th, Seifert G, Elstner M, Hajnal Z, Jungnickel G, Porezag D, Suhai S, Scholz R 2000 Phys. Stat. Sol. (b) 217 41

    [29]

    Menon M, Subbaswamy K R 1997 Phys. Rev. B 55 9231

    [30]

    Tang M S, Wang C Z, Chan C T, Ho K M 1996 Phys. Rev. B 53 979

    [31]

    Mehl M J, Papaconstantopoulos D A 1994 Phys. Rev. B 50 14694

    [32]

    Ernstein N, Kairas E 1997 Phys. Rev. B 56 10488

    [33]

    Esfarjani K, Kawazoe Y 1998 J. Phys.: Condens. Matter 10 8257

    [34]

    Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408

    [35]

    Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1

    [36]

    Goedecker S 1999 Rev. Mod. Phys. 71 1085

    [37]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [38]

    Artacho E, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Sánchez-Portal D, Soler J M 2005 Handbook of Materials Modeling (Netherland: Springer) p77

    [39]

    Hernández E, Gillan M J, Goring C M 1996 Phys. Rev. B 53 7147

    [40]

    Bowler D R, Miyazaki T, Gillan M J 2002 J. Phys.: Condens. Matter 14 2781

    [41]

    BowlerD R, Choudhury R, Gillan M J, Miyazaki T 2006 Phys. Status Solidi (b) 243 989

    [42]

    Gillan M, Bowler D R, Torralba A, Miyazaki T 2007 Comput. Phys. Commun. 177 14

    [43]

    Ozaki T 2006 Phys. Rev. B 74 245101

    [44]

    Haynes P D, Shylaris C K, Mostofi A A, Payne M C 2006 Phys. Status Solidi (b) 243 2489

    [45]

    Tsuchida E 2007 J. Phys. Soc. Japan 76 034708

    [46]

    Takayama R, Hoshi T, Sogabe T, Zhang S L, Fujiwara T 2007 Phys. Rev. B 76 115327

    [47]

    de Pablo P J, Moreno-Herrero F, Colchero J, Herrero J G, Herrero P, Baró A M, Ordejón P, Soler J M, Artacho E 2000 Phys. Rev. Lett. 85 4992

    [48]

    Otsuka T, Miyazaki T, Ohno T, Bowler D R, Gillan M J 2008 J. Phys.: Condens. Matter 20 294201

    [49]

    Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708

    [50]

    Chaudhri I, Yu M, Jayanthi C S, Wu S Y 2014 J. Phys. Conden. Matter 26 115301

    [51]

    Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57

    [52]

    Xin Z H, Zhang C Y, Yu M, Jayanthi C S, Wu S Y 2014 Computat. Mater. Sci. 84 49

    [53]

    Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705

    [54]

    Tandy P, Yu M, Leahy C, Jayanthi C S, Wu S Y 2015 J. Chem. Phys. 142 124106

    [55]

    Max B, Robert O J 1927 Annalen der Physik 389 457

    [56]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision C.02, 2004 (Wallingford CT: Gaussian, Inc.)

    [57]

    Mailhiot C, McMahan A K 1991 Phys. Rev. B 44 11578

    [58]

    Yin M T, Cohen M L 1982 Phys. Rev. B 26 5668

    [59]

    Wang S Q, Ye H Q 2003 J. Phys: Condens. Matter 15 5307

    [60]

    McSkimin H J, Andreatch P 1972 J. Appl. Phys. 43 2944

    [61]

    Dargys A, Kundrotas J 1994 Handbook on Physical Properties of Ge, Si, GaAs and InP (Vilnius: Science and Encyclopedia Publishers)

    [62]

    Papaconstantopoulos D A, Mehl M J, Erwin S C, Pederson M R, 1998 Tight-Binding Approach to Computational Materials Science, edited by Turchi P E A, Gonis A, and Colombo L, MRS Symposia Proceedings 491 (Pittsburg: Materials Research Society) p221

    [63]

    Bermstein N, Mehl M J, Papaconstantopoulos D A, Papanicolaou N I, Bazant M Z, Kaxiras E 2000 Phys. Rev. B 62 4477

    [64]

    Feldman J L, Bernstein N, Papaconstantopoulos D A, Mehl M J 2004 Phys. Rev. B 70 165201

    [65]

    Menon M, Subbaswamy K R 1993 Phys. Rev. B 47 12754

    [66]

    Menon M, Subbaswamy K R 1994 Phys. Rev. B 50 11577

    [67]

    ernstein N, Kaxiras E 1997 Phys. Rev. B 56 10488

    [68]

    Northrup J E 1993 Phys. Rev. B 47 10032

    [69]

    Zhu Z, Shima N, Tsukada M 1989 Phys. Rev. B 40 11868

    [70]

    Chadi D J 1979 Phys. Rev. Lett. 43 43

    [71]

    Chadi D J 1979 J. Vac. Sci. Technol. 16 1290

    [72]

    Cho K, Kaxiras E 1997 Europhys. Lett. 39 287

    [73]

    Cho K, Kaxiras E 1998 Surf. Sci. 396 L261

    [74]

    Takayanagi K, Tanishiro Y, Takahashi S, Takahashi M 1985 Surf. Sci. 164 367

    [75]

    Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S 1985 J. Vac. Sci. Technol. A 3 1502

    [76]

    Chang C M, Wei C M 2003 Phys. Rev. B 67 033309

    [77]

    Sato T, Kitamura S, Iwatsuki M 2000 J. Vac. Sci. Technol. A 18 960

    [78]

    Sato T, Kitamura S, Iwatsuki M 2000 Surf. Sci. 445 130

    [79]

    Hwang I S, Ho M S, Tsong T T 1999 Phys. Rev. Lett. 83 120

    [80]

    Raty J Y, Galli G, Bostedt C, van Buuren T W, Terminello L J 2003 Phys. Rev. Lett. 90 037401

    [81]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [82]

    Laasonen K, Car R, Lee C, Vanderbilt D 1991 Phys. Rev. B 43 6796

    [83]

    Laasonen K, Pasquarello A, Lee C, Car R, Vanderbilt D 1993 Phys. Rev. B 47 10142

    [84]

    Wang Yue, Perdew John P 1991 Phys. Rev. B 44 13298

    [85]

    Jayanthi C S, Wu S Y, Cocks J, Luo N S, Xie Z L, Menon M, Yang G 1998 Phys. Rev. B 57 3799

    [86]

    Wu S Y, Jayanthi C S 2002 Phys. Report 358 1

    [87]

    Tchernatinsky A, Leahy C, Migas D, Yu M, Jayanthi C S, Wu S Y 2005 Bull. Am. Phys. Soc. 50 1

    [88]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [89]

    Pérez-Garrido A 2000 Phys. Rev. B 62 6979

    [90]

    Mykhaylyk O O, Solonin Y, Batchelder D, Brydson R 2005 J. Appl. Phys. 97 074302

    [91]

    Kuzentsov V L, Butenko Y V 2006 Ultrananocrystalline Diamond Synthesis, Properties, and Applications (edited by Shenderova O A, Gruen D M) (New York: William Andrew Publishing) p405

    [92]

    Tian W Q, Yu M, Leahy C, Jayanthi C S, Wu S Y 2009 J. Computat. Theor. Nanosci. 6 390

    [93]

    Journet C, Maser W K, Bernier P, Loiseau A, de la Lamy C M, Lefrant S, Deniard P, Lee R, Fischer J E 1997 Nature 388 756

    [94]

    Dai H, Rinzler A G, Nikolaev P, Thess A, Colbert D T, Smalley R E 1996 Chem. Phys. Lett. 260 471

    [95]

    Cassell A M, Raymakers J A, Kong J, Dai H 1999 J. Phys. Chem. B 103 6484

    [96]

    Franklin N R, Li Y, Chen R J, Jave A, Dai H 2001 Appl. Phys. Lett. 79 4571

    [97]

    Maruyama S, Kojina R, Miyauchi Y, Chiashi S, Kohno M 2002 Chem. Phys. Lett. 360 229

    [98]

    Bronikowski M J, Willis P A, Colbert D T, Smith K A, Smalley R E 2001 J. Vac. Sci. Technol. A 19 1800

    [99]

    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler S G, Colbert D T, Scuseria G E, Tománek D, Fischer J E, Smalley R E 1996 Science 273 483

    [100]

    Takagi D, Homma Y, Hibio H, Suzuki S, Kobayashi Y 2006 Nano Lett. 6 2642

    [101]

    Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Lo Y 2006 Nano. Lett. 6 2928

    [102]

    Sharma R, Rez P, Treacy M M J, Stuart S J 2005 J. Electron Microscopy 54 231

    [103]

    Kumar M, Ando Y 2010 J. Nanosci. Nanotechnol. 6 3739

    [104]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [105]

    Baker R T K, Baker M A, Harris P S, Feates F S, Waite R J 1972 J. Catal. 26 51

    [106]

    Takagi D, Kobayashi Y, Homma Y 2009 J. Am. Chem. Soc. 131 6922

    [107]

    Takagi D, Homma Y, Hibio H, Suzuki S, Kobayashi Y 2007 Nano Lett. 7 2272

    [108]

    Zhu Z, Lu Y, Qiao D, Bai S, Hu T, Li L, Zheng J 2005 J. Am. Chem. Soc. 127 15698

    [109]

    Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C 2001 Phys. Rev. Lett. 87 275504

    [110]

    Charlier J C, de Vita A, Blase X, Car R 1997 Science 275 646

    [111]

    Lee Y H, Kim S G, Tománek D 1997 Phys. Rev. Lett. 78 2393

    [112]

    Raty J Y, Gygi F, Galli G 2005 Phys. Rev. Lett. 95 096103

    [113]

    Fan X, Buczko R, Puretzky A A, Geohegan D B, Howe J Y, Pantelides S T, Pennycook S J 2003 Phys. Rev. Lett. 90 145501

    [114]

    Kanzow H, Ding A 1999 Phys. Rev. B 60 11180

    [115]

    Ding F, Rosén A, Bolton K 2004 Chem. Phys. Lett. 393 309

    [116]

    Shibuta Y, Maruyama S 2003 Eat Transfer-Asian Research 32 690

    [117]

    Shibuta Y, Maruyama S 2003 Chem. Phys. Lett. 382 381

    [118]

    Shibuta Y, Maruyama S 2004 Thermal Sci. Engineer. 12 79

    [119]

    Shibuta Y, Elliott J A 2006 Chem. Phys. Lett. 427 365

    [120]

    Shibuta Y, Maruyama S 2007 Computat. Mater. Sci. 39 842

    [121]

    Elliott J A, Hamm M, Shibuta Y 2009 J. Chem. Phys. 130 034704

    [122]

    Maiti A, Brabec C J, Roland C, Bernholc J 1995 Phys. Rev. B 52 14850

    [123]

    Maiti A, Brabec C J, Bernholc J 1997 Phys. Rev. B 55 R6097

    [124]

    Andriotis A N, Menon M, Froudakis G 2000 Phys. Rev. Lett. 85 3193

    [125]

    Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407

    [126]

    Matsubara M, Massobrio C 2005 J. Phys. Chem. A 109 4415

    [127]

    Matsubara M, Kortus J, Parlebas J C, Massobrio C 2006 Phys. Rev. Lett. 96 155502

    [128]

    Huda M N, Ray A K 2008 Chem. Phys. Lett. 457 124

    [129]

    Wang R X, Zhang J D, Liu C B 2005 Chem. Phys. Lett. 411 333

    [130]

    Pochet P, Genovese L, Caliste D, Rousseau I, Goedecker S, Deutsch T 2010 Phys. Rev. B 82 035431

    [131]

    Gleb P, Natalia D, Elena B, Richard W, Leonid D 2011 Scientific Reports 1 96

    [132]

    Piazza Zachary A, Hi H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nature Commun. 5 3113

    [133]

    Gonzalez S N, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804

    [134]

    Gopakumar G, Nguyen M T, Ceulemans A 2008 Chem. Phys. Lett. 450 175

    [135]

    Ceulemans A, Tshishimbi J, Gopakumar G, Nguyen M T 2008 Chem. Phys. Lett. 461 226

    [136]

    Tunna B, Pederson Mark R, Zope Rajendra R 2008 Phys. Rev. B 78 045408

    [137]

    De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S 2011 Phys. Rev. Lett. 106 225502

    [138]

    Gunasinghe R N, Kah C B, Quarles K D, Wang X Q 2011 Appl. Phys. Lett. 98 261906

    [139]

    Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I 2008 Phys. Rev. Lett. 100 159901

  • [1] 董珊珊, 秦立国, 刘福窑, 龚黎华, 黄接辉. 哈密顿量诱导的量子演化速度.  , 2023, 72(22): 220301. doi: 10.7498/aps.72.20231009
    [2] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞.  , 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [3] 彭楚才, 王金相, 刘林林. 介质环境对铜丝电爆炸制备纳米粉体的影响.  , 2015, 64(7): 075203. doi: 10.7498/aps.64.075203
    [4] 杨子元. 掺杂晶体材料ZnGa2O4:Fe3+局域结构畸变及其微观自旋哈密顿参量研究.  , 2014, 63(17): 177501. doi: 10.7498/aps.63.177501
    [5] 樊娟娟, 于秀玲, 梁雪梅. AB/CD嵌段共聚物共混体系多尺度结构的自洽场模拟.  , 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [6] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响.  , 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [7] 楼智美. 哈密顿Ermakov系统的形式不变性.  , 2005, 54(5): 1969-1971. doi: 10.7498/aps.54.1969
    [8] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究Ⅱ——MIM体系分子轨道场的计算与分析.  , 2005, 54(5): 2282-2290. doi: 10.7498/aps.54.2282
    [9] 陶建武, 石要武, 常文秀. 端口受控哈密顿系统的混沌反控制研究.  , 2004, 53(6): 1682-1686. doi: 10.7498/aps.53.1682
    [10] 陈绍英, 许海波, 王光瑞, 陈式刚. 耦合哈密顿系统中测度同步的研究.  , 2004, 53(12): 4098-4110. doi: 10.7498/aps.53.4098
    [11] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究.  , 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
    [12] 杨子元. 晶体材料中3d2态离子自旋哈密顿参量的微观起源.  , 2004, 53(6): 1981-1988. doi: 10.7498/aps.53.1981
    [13] 蔡 浩, 陈世荣, 黄念宁. 完全可积的非线性方程建立哈密顿理论的一般方法和对SG方程应用.  , 2003, 52(9): 2206-2212. doi: 10.7498/aps.52.2206
    [14] 陈增军, 宁西京. 非厄米哈密顿量的物理意义.  , 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [15] 李伟, 陈式刚. 一个一维周期驱动哈密顿系统的实例及混沌控制.  , 2001, 50(8): 1434-1439. doi: 10.7498/aps.50.1434
    [16] 赖云忠, 梁九卿. 哈密顿算符是SU(1,1)和SU(2)算子含时线性组合量子系统的时间演变及厄密不变量.  , 1996, 45(5): 738-746. doi: 10.7498/aps.45.738
    [17] 李国强, 徐躬耦. 形变重离子光学势的自洽半经典计算.  , 1989, 38(4): 534-540. doi: 10.7498/aps.38.534
    [18] 李国强, 徐躬耦. 用有限温度自洽半经典方法研究热核上巨共振的性质.  , 1989, 38(9): 1413-1421. doi: 10.7498/aps.38.1413
    [19] 王顺金. 多体关联动力学中的自洽平均场.  , 1988, 37(6): 881-891. doi: 10.7498/aps.37.881
    [20] 林福成, 祝继康, 黄武汉. 推广的等效自旋哈密顿.  , 1964, 20(11): 1114-1123. doi: 10.7498/aps.20.1114
计量
  • 文章访问数:  102132
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-23
  • 修回日期:  2015-05-20
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map