Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Material modeling for large scale and complex nanostructures: A semi-empirical Hamiltonian method

Yu Ming Wu Shi-Yu

Citation:

Material modeling for large scale and complex nanostructures: A semi-empirical Hamiltonian method

Yu Ming, Wu Shi-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The advent of the era of nano-structures has also brought about critical issues regarding the determination of stable structures and the associated properties of such systems. From the theoretical perspective, it requires to consider systems of sizes of up to tens of thousands atoms to obtain a realistic picture of thermodynamically stable nano-structure. This is certainly beyond the scope of DFT-based methods. On the other hand, conventional semi-empirical Hamiltonians, which are capable of treating systems of those sizes, do not possess the rigor and accuracy that can lead to a reliable determination of stable structures in nano-systems. During the last dozen years, extensive effort has been devoted to developing methods that can handle systems of nano-sizes on the one hand, while possess first principles-level accuracy on the other. In this review, we present just such a recently developed and well-tested semi-empirical Hamiltonian, referred in the literature as the SCED-LCAO Hamiltonian. Here SCED is the acronym for self-consistent/environment-dependent while LCAO stands for linear combination of atomic orbitals. Compared to existing conventional two-center semiempirical Hamiltonians, the SCED-LCAO Hamiltonian distinguishes itself by remedying the deficiencies of conventional two-center semi-empirical Hamiltonians on two important fronts: the lack of means to determine charge redistribution and the lack of involvement of multi-center interactions. Its framework provides a scheme to self-consistently determine the charge redistribution and includes multi-center interactions. In this way, bond-breaking and bond-forming processes associated with complex structural reconstructions can be described appropriately. With respect to first principles methods, the SCED-LCAO Hamiltonian replaces the time-consuming energy integrations of the self-consistent loop in first principles methods by simple parameterized functions, allowing a speed-up of the self-consistent determination of charge redistribution by two orders of magnitudes. Thus the method based on the SCED-LCAO is no more cumbersome than the conventional semi-empirical methods on the one hand and can achieve the first principle-level accuracy on the other. The parameters and parametric functions for SCED-LCAO Hamiltonian are carefully optimized to model electron-electron correlations and multi-center interactions in an efficient fitting process including a global optimization scheme. To ensure the transferability of the Hamiltonian, the data base chosen in the fitting process contains large amount of physical properties, including (i) the binding energies, the bond lengths, and the symmetries of various clusters covering not only the ground state but also the excited phases, (ii) the binding energies as a function of atomic volume for various crystal phases including also the high pressure phases, and (iii) the electronic band structures of the crystalline systems. In particular, the data bases for excited phases of clusters and high pressure phases in bulk systems are more important when performing molecular dynamics simulations where correct transferable phases are required, such as the excited phases. The validity and the robustness of the SCED-LCAO Hamiltonian have been tested for more complicated Si-, C-, and B-based systems. The success of the SCED-LCAO Hamiltonian will be elucidated through the following applications: (i) the phase transformations of carbon bucky-diamond clusters upon annealing, (ii) the initial stage of growth of single-wall carbon nanotubes (SWCNTs), (iii) the discovery of bulky-diamond SiC clusters, (iv) the morphology and energetics of SiC nanowires (NWs), and (v) the self-assembly of stable SiC based caged nano-structures. A recent upgrade of the SCED-LCAO Hamiltonian, by taking into account the effect on the atomic orbitals due to the atomic aggregation, will also be discussed in this review. This upgrade Hamiltonian has successfully characterized the electron-deficiency in trivalent boron element captured complex chemical bonding in various boron allotropes, which is a big challenge for semi-empirical Hamiltonians.
      Corresponding author: Yu Ming, m0yu0001@louisville.edu
    • Funds: Project supported by the US National Science Fundation (Grant No. NSF-DMR-0112824), the US Department of Energy (Grant No. DE-FG02-00ER45832), the US Army (SMDC) (Grant No. W9113M-04-C-0024), and the Kentucky Science and Engineering Fundation (Grant No. KSEF-753-RED-007).
    [1]

    Hehre W J, Radom L, Schleyer P V R, Pople J A 1986 Ab Initio Molecular Orbital Theory (New York: John Wiley & Sons)

    [2]

    Szabo A, Ostlund N S 1996 Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (New York, Mineola: Dover Publications Inc.)

    [3]

    Jensen F 2006 Introduction to Computational Chemistry (New York: John Wiley & Sons)

    [4]

    Cramer C J 2004 Essentials of Computational Chemistry: Theories and Models (Chichester, England: John Wiley & Sons)

    [5]

    Møller Chr, Plesset M S 1934 Phys. Rev. 46 618

    [6]

    Coester F 1958 Nucl. Phys. 7 421

    [7]

    Coester F, Kmmel H 1960 Nucl. Phys. 17 477

    [8]

    Čižek J 1966 J. Chem. Phys. 45 4256

    [9]

    Kmmel H 1971 Nucl. Phys. A 176 205

    [10]

    Kmmel H, Lhrmann K H 1972 Nucl. Phys. A 191 525

    [11]

    Svensson M, Humbel S, Forese R D J, Matsubara T, Sieber S, Morokuma K 1996 J. Phys. Chem. 100 19357

    [12]

    Dapprich S, Komáromi I, Byun K S, Morokuma K, Frisch M J 1999 J. Molecular Structure (Theochem) 46-462 1

    [13]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [14]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [15]

    Parr R G, Yang W 1989 Density Functional Theory of Atoms and Molecules (Oxford: Oxford University Press)

    [16]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Kresse G, Furthnuller J 1996 Comput. Mater. Sci. 6 15

    [19]

    Pariser R, Parr R G 1953 J. Chem. Phys. 21 466

    [20]

    Pariser R, Parr R G 1953 J. Chem. Phys. 21 767

    [21]

    Pople J A 1953 Trans. Faraday Soc. 49 1375

    [22]

    Dewar M J S, Thiel W 1977 J. Am. Chem. Soc. 99 4899

    [23]

    Majewski J, Vogl P 1987 Phys. Rev. B 35 9666

    [24]

    Goringe C M, Bowler D R, Hernández E 1997 Rep. Prog. Phys. 60 1447

    [25]

    Andriotis A N, Menon M 1999 Phys. Rev. B 59 15942

    [26]

    Frauenheim Th, Weich F, Kohler Th, Uhlmann S, Porezag D, Seifert G 1995 Phys. Rev. B 52 11492

    [27]

    laudeck P, Frauenheim Th, Porezag D, Seifert G, Fromm E 1992 J. Phys.: Condens. Matter 4 6389

    [28]

    Frauenheim Th, Seifert G, Elstner M, Hajnal Z, Jungnickel G, Porezag D, Suhai S, Scholz R 2000 Phys. Stat. Sol. (b) 217 41

    [29]

    Menon M, Subbaswamy K R 1997 Phys. Rev. B 55 9231

    [30]

    Tang M S, Wang C Z, Chan C T, Ho K M 1996 Phys. Rev. B 53 979

    [31]

    Mehl M J, Papaconstantopoulos D A 1994 Phys. Rev. B 50 14694

    [32]

    Ernstein N, Kairas E 1997 Phys. Rev. B 56 10488

    [33]

    Esfarjani K, Kawazoe Y 1998 J. Phys.: Condens. Matter 10 8257

    [34]

    Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408

    [35]

    Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1

    [36]

    Goedecker S 1999 Rev. Mod. Phys. 71 1085

    [37]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [38]

    Artacho E, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Sánchez-Portal D, Soler J M 2005 Handbook of Materials Modeling (Netherland: Springer) p77

    [39]

    Hernández E, Gillan M J, Goring C M 1996 Phys. Rev. B 53 7147

    [40]

    Bowler D R, Miyazaki T, Gillan M J 2002 J. Phys.: Condens. Matter 14 2781

    [41]

    BowlerD R, Choudhury R, Gillan M J, Miyazaki T 2006 Phys. Status Solidi (b) 243 989

    [42]

    Gillan M, Bowler D R, Torralba A, Miyazaki T 2007 Comput. Phys. Commun. 177 14

    [43]

    Ozaki T 2006 Phys. Rev. B 74 245101

    [44]

    Haynes P D, Shylaris C K, Mostofi A A, Payne M C 2006 Phys. Status Solidi (b) 243 2489

    [45]

    Tsuchida E 2007 J. Phys. Soc. Japan 76 034708

    [46]

    Takayama R, Hoshi T, Sogabe T, Zhang S L, Fujiwara T 2007 Phys. Rev. B 76 115327

    [47]

    de Pablo P J, Moreno-Herrero F, Colchero J, Herrero J G, Herrero P, Baró A M, Ordejón P, Soler J M, Artacho E 2000 Phys. Rev. Lett. 85 4992

    [48]

    Otsuka T, Miyazaki T, Ohno T, Bowler D R, Gillan M J 2008 J. Phys.: Condens. Matter 20 294201

    [49]

    Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708

    [50]

    Chaudhri I, Yu M, Jayanthi C S, Wu S Y 2014 J. Phys. Conden. Matter 26 115301

    [51]

    Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57

    [52]

    Xin Z H, Zhang C Y, Yu M, Jayanthi C S, Wu S Y 2014 Computat. Mater. Sci. 84 49

    [53]

    Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705

    [54]

    Tandy P, Yu M, Leahy C, Jayanthi C S, Wu S Y 2015 J. Chem. Phys. 142 124106

    [55]

    Max B, Robert O J 1927 Annalen der Physik 389 457

    [56]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision C.02, 2004 (Wallingford CT: Gaussian, Inc.)

    [57]

    Mailhiot C, McMahan A K 1991 Phys. Rev. B 44 11578

    [58]

    Yin M T, Cohen M L 1982 Phys. Rev. B 26 5668

    [59]

    Wang S Q, Ye H Q 2003 J. Phys: Condens. Matter 15 5307

    [60]

    McSkimin H J, Andreatch P 1972 J. Appl. Phys. 43 2944

    [61]

    Dargys A, Kundrotas J 1994 Handbook on Physical Properties of Ge, Si, GaAs and InP (Vilnius: Science and Encyclopedia Publishers)

    [62]

    Papaconstantopoulos D A, Mehl M J, Erwin S C, Pederson M R, 1998 Tight-Binding Approach to Computational Materials Science, edited by Turchi P E A, Gonis A, and Colombo L, MRS Symposia Proceedings 491 (Pittsburg: Materials Research Society) p221

    [63]

    Bermstein N, Mehl M J, Papaconstantopoulos D A, Papanicolaou N I, Bazant M Z, Kaxiras E 2000 Phys. Rev. B 62 4477

    [64]

    Feldman J L, Bernstein N, Papaconstantopoulos D A, Mehl M J 2004 Phys. Rev. B 70 165201

    [65]

    Menon M, Subbaswamy K R 1993 Phys. Rev. B 47 12754

    [66]

    Menon M, Subbaswamy K R 1994 Phys. Rev. B 50 11577

    [67]

    ernstein N, Kaxiras E 1997 Phys. Rev. B 56 10488

    [68]

    Northrup J E 1993 Phys. Rev. B 47 10032

    [69]

    Zhu Z, Shima N, Tsukada M 1989 Phys. Rev. B 40 11868

    [70]

    Chadi D J 1979 Phys. Rev. Lett. 43 43

    [71]

    Chadi D J 1979 J. Vac. Sci. Technol. 16 1290

    [72]

    Cho K, Kaxiras E 1997 Europhys. Lett. 39 287

    [73]

    Cho K, Kaxiras E 1998 Surf. Sci. 396 L261

    [74]

    Takayanagi K, Tanishiro Y, Takahashi S, Takahashi M 1985 Surf. Sci. 164 367

    [75]

    Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S 1985 J. Vac. Sci. Technol. A 3 1502

    [76]

    Chang C M, Wei C M 2003 Phys. Rev. B 67 033309

    [77]

    Sato T, Kitamura S, Iwatsuki M 2000 J. Vac. Sci. Technol. A 18 960

    [78]

    Sato T, Kitamura S, Iwatsuki M 2000 Surf. Sci. 445 130

    [79]

    Hwang I S, Ho M S, Tsong T T 1999 Phys. Rev. Lett. 83 120

    [80]

    Raty J Y, Galli G, Bostedt C, van Buuren T W, Terminello L J 2003 Phys. Rev. Lett. 90 037401

    [81]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [82]

    Laasonen K, Car R, Lee C, Vanderbilt D 1991 Phys. Rev. B 43 6796

    [83]

    Laasonen K, Pasquarello A, Lee C, Car R, Vanderbilt D 1993 Phys. Rev. B 47 10142

    [84]

    Wang Yue, Perdew John P 1991 Phys. Rev. B 44 13298

    [85]

    Jayanthi C S, Wu S Y, Cocks J, Luo N S, Xie Z L, Menon M, Yang G 1998 Phys. Rev. B 57 3799

    [86]

    Wu S Y, Jayanthi C S 2002 Phys. Report 358 1

    [87]

    Tchernatinsky A, Leahy C, Migas D, Yu M, Jayanthi C S, Wu S Y 2005 Bull. Am. Phys. Soc. 50 1

    [88]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [89]

    Pérez-Garrido A 2000 Phys. Rev. B 62 6979

    [90]

    Mykhaylyk O O, Solonin Y, Batchelder D, Brydson R 2005 J. Appl. Phys. 97 074302

    [91]

    Kuzentsov V L, Butenko Y V 2006 Ultrananocrystalline Diamond Synthesis, Properties, and Applications (edited by Shenderova O A, Gruen D M) (New York: William Andrew Publishing) p405

    [92]

    Tian W Q, Yu M, Leahy C, Jayanthi C S, Wu S Y 2009 J. Computat. Theor. Nanosci. 6 390

    [93]

    Journet C, Maser W K, Bernier P, Loiseau A, de la Lamy C M, Lefrant S, Deniard P, Lee R, Fischer J E 1997 Nature 388 756

    [94]

    Dai H, Rinzler A G, Nikolaev P, Thess A, Colbert D T, Smalley R E 1996 Chem. Phys. Lett. 260 471

    [95]

    Cassell A M, Raymakers J A, Kong J, Dai H 1999 J. Phys. Chem. B 103 6484

    [96]

    Franklin N R, Li Y, Chen R J, Jave A, Dai H 2001 Appl. Phys. Lett. 79 4571

    [97]

    Maruyama S, Kojina R, Miyauchi Y, Chiashi S, Kohno M 2002 Chem. Phys. Lett. 360 229

    [98]

    Bronikowski M J, Willis P A, Colbert D T, Smith K A, Smalley R E 2001 J. Vac. Sci. Technol. A 19 1800

    [99]

    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler S G, Colbert D T, Scuseria G E, Tománek D, Fischer J E, Smalley R E 1996 Science 273 483

    [100]

    Takagi D, Homma Y, Hibio H, Suzuki S, Kobayashi Y 2006 Nano Lett. 6 2642

    [101]

    Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Lo Y 2006 Nano. Lett. 6 2928

    [102]

    Sharma R, Rez P, Treacy M M J, Stuart S J 2005 J. Electron Microscopy 54 231

    [103]

    Kumar M, Ando Y 2010 J. Nanosci. Nanotechnol. 6 3739

    [104]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [105]

    Baker R T K, Baker M A, Harris P S, Feates F S, Waite R J 1972 J. Catal. 26 51

    [106]

    Takagi D, Kobayashi Y, Homma Y 2009 J. Am. Chem. Soc. 131 6922

    [107]

    Takagi D, Homma Y, Hibio H, Suzuki S, Kobayashi Y 2007 Nano Lett. 7 2272

    [108]

    Zhu Z, Lu Y, Qiao D, Bai S, Hu T, Li L, Zheng J 2005 J. Am. Chem. Soc. 127 15698

    [109]

    Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C 2001 Phys. Rev. Lett. 87 275504

    [110]

    Charlier J C, de Vita A, Blase X, Car R 1997 Science 275 646

    [111]

    Lee Y H, Kim S G, Tománek D 1997 Phys. Rev. Lett. 78 2393

    [112]

    Raty J Y, Gygi F, Galli G 2005 Phys. Rev. Lett. 95 096103

    [113]

    Fan X, Buczko R, Puretzky A A, Geohegan D B, Howe J Y, Pantelides S T, Pennycook S J 2003 Phys. Rev. Lett. 90 145501

    [114]

    Kanzow H, Ding A 1999 Phys. Rev. B 60 11180

    [115]

    Ding F, Rosén A, Bolton K 2004 Chem. Phys. Lett. 393 309

    [116]

    Shibuta Y, Maruyama S 2003 Eat Transfer-Asian Research 32 690

    [117]

    Shibuta Y, Maruyama S 2003 Chem. Phys. Lett. 382 381

    [118]

    Shibuta Y, Maruyama S 2004 Thermal Sci. Engineer. 12 79

    [119]

    Shibuta Y, Elliott J A 2006 Chem. Phys. Lett. 427 365

    [120]

    Shibuta Y, Maruyama S 2007 Computat. Mater. Sci. 39 842

    [121]

    Elliott J A, Hamm M, Shibuta Y 2009 J. Chem. Phys. 130 034704

    [122]

    Maiti A, Brabec C J, Roland C, Bernholc J 1995 Phys. Rev. B 52 14850

    [123]

    Maiti A, Brabec C J, Bernholc J 1997 Phys. Rev. B 55 R6097

    [124]

    Andriotis A N, Menon M, Froudakis G 2000 Phys. Rev. Lett. 85 3193

    [125]

    Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407

    [126]

    Matsubara M, Massobrio C 2005 J. Phys. Chem. A 109 4415

    [127]

    Matsubara M, Kortus J, Parlebas J C, Massobrio C 2006 Phys. Rev. Lett. 96 155502

    [128]

    Huda M N, Ray A K 2008 Chem. Phys. Lett. 457 124

    [129]

    Wang R X, Zhang J D, Liu C B 2005 Chem. Phys. Lett. 411 333

    [130]

    Pochet P, Genovese L, Caliste D, Rousseau I, Goedecker S, Deutsch T 2010 Phys. Rev. B 82 035431

    [131]

    Gleb P, Natalia D, Elena B, Richard W, Leonid D 2011 Scientific Reports 1 96

    [132]

    Piazza Zachary A, Hi H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nature Commun. 5 3113

    [133]

    Gonzalez S N, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804

    [134]

    Gopakumar G, Nguyen M T, Ceulemans A 2008 Chem. Phys. Lett. 450 175

    [135]

    Ceulemans A, Tshishimbi J, Gopakumar G, Nguyen M T 2008 Chem. Phys. Lett. 461 226

    [136]

    Tunna B, Pederson Mark R, Zope Rajendra R 2008 Phys. Rev. B 78 045408

    [137]

    De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S 2011 Phys. Rev. Lett. 106 225502

    [138]

    Gunasinghe R N, Kah C B, Quarles K D, Wang X Q 2011 Appl. Phys. Lett. 98 261906

    [139]

    Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I 2008 Phys. Rev. Lett. 100 159901

  • [1]

    Hehre W J, Radom L, Schleyer P V R, Pople J A 1986 Ab Initio Molecular Orbital Theory (New York: John Wiley & Sons)

    [2]

    Szabo A, Ostlund N S 1996 Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (New York, Mineola: Dover Publications Inc.)

    [3]

    Jensen F 2006 Introduction to Computational Chemistry (New York: John Wiley & Sons)

    [4]

    Cramer C J 2004 Essentials of Computational Chemistry: Theories and Models (Chichester, England: John Wiley & Sons)

    [5]

    Møller Chr, Plesset M S 1934 Phys. Rev. 46 618

    [6]

    Coester F 1958 Nucl. Phys. 7 421

    [7]

    Coester F, Kmmel H 1960 Nucl. Phys. 17 477

    [8]

    Čižek J 1966 J. Chem. Phys. 45 4256

    [9]

    Kmmel H 1971 Nucl. Phys. A 176 205

    [10]

    Kmmel H, Lhrmann K H 1972 Nucl. Phys. A 191 525

    [11]

    Svensson M, Humbel S, Forese R D J, Matsubara T, Sieber S, Morokuma K 1996 J. Phys. Chem. 100 19357

    [12]

    Dapprich S, Komáromi I, Byun K S, Morokuma K, Frisch M J 1999 J. Molecular Structure (Theochem) 46-462 1

    [13]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [14]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [15]

    Parr R G, Yang W 1989 Density Functional Theory of Atoms and Molecules (Oxford: Oxford University Press)

    [16]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Kresse G, Furthnuller J 1996 Comput. Mater. Sci. 6 15

    [19]

    Pariser R, Parr R G 1953 J. Chem. Phys. 21 466

    [20]

    Pariser R, Parr R G 1953 J. Chem. Phys. 21 767

    [21]

    Pople J A 1953 Trans. Faraday Soc. 49 1375

    [22]

    Dewar M J S, Thiel W 1977 J. Am. Chem. Soc. 99 4899

    [23]

    Majewski J, Vogl P 1987 Phys. Rev. B 35 9666

    [24]

    Goringe C M, Bowler D R, Hernández E 1997 Rep. Prog. Phys. 60 1447

    [25]

    Andriotis A N, Menon M 1999 Phys. Rev. B 59 15942

    [26]

    Frauenheim Th, Weich F, Kohler Th, Uhlmann S, Porezag D, Seifert G 1995 Phys. Rev. B 52 11492

    [27]

    laudeck P, Frauenheim Th, Porezag D, Seifert G, Fromm E 1992 J. Phys.: Condens. Matter 4 6389

    [28]

    Frauenheim Th, Seifert G, Elstner M, Hajnal Z, Jungnickel G, Porezag D, Suhai S, Scholz R 2000 Phys. Stat. Sol. (b) 217 41

    [29]

    Menon M, Subbaswamy K R 1997 Phys. Rev. B 55 9231

    [30]

    Tang M S, Wang C Z, Chan C T, Ho K M 1996 Phys. Rev. B 53 979

    [31]

    Mehl M J, Papaconstantopoulos D A 1994 Phys. Rev. B 50 14694

    [32]

    Ernstein N, Kairas E 1997 Phys. Rev. B 56 10488

    [33]

    Esfarjani K, Kawazoe Y 1998 J. Phys.: Condens. Matter 10 8257

    [34]

    Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408

    [35]

    Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1

    [36]

    Goedecker S 1999 Rev. Mod. Phys. 71 1085

    [37]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [38]

    Artacho E, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Sánchez-Portal D, Soler J M 2005 Handbook of Materials Modeling (Netherland: Springer) p77

    [39]

    Hernández E, Gillan M J, Goring C M 1996 Phys. Rev. B 53 7147

    [40]

    Bowler D R, Miyazaki T, Gillan M J 2002 J. Phys.: Condens. Matter 14 2781

    [41]

    BowlerD R, Choudhury R, Gillan M J, Miyazaki T 2006 Phys. Status Solidi (b) 243 989

    [42]

    Gillan M, Bowler D R, Torralba A, Miyazaki T 2007 Comput. Phys. Commun. 177 14

    [43]

    Ozaki T 2006 Phys. Rev. B 74 245101

    [44]

    Haynes P D, Shylaris C K, Mostofi A A, Payne M C 2006 Phys. Status Solidi (b) 243 2489

    [45]

    Tsuchida E 2007 J. Phys. Soc. Japan 76 034708

    [46]

    Takayama R, Hoshi T, Sogabe T, Zhang S L, Fujiwara T 2007 Phys. Rev. B 76 115327

    [47]

    de Pablo P J, Moreno-Herrero F, Colchero J, Herrero J G, Herrero P, Baró A M, Ordejón P, Soler J M, Artacho E 2000 Phys. Rev. Lett. 85 4992

    [48]

    Otsuka T, Miyazaki T, Ohno T, Bowler D R, Gillan M J 2008 J. Phys.: Condens. Matter 20 294201

    [49]

    Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708

    [50]

    Chaudhri I, Yu M, Jayanthi C S, Wu S Y 2014 J. Phys. Conden. Matter 26 115301

    [51]

    Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57

    [52]

    Xin Z H, Zhang C Y, Yu M, Jayanthi C S, Wu S Y 2014 Computat. Mater. Sci. 84 49

    [53]

    Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705

    [54]

    Tandy P, Yu M, Leahy C, Jayanthi C S, Wu S Y 2015 J. Chem. Phys. 142 124106

    [55]

    Max B, Robert O J 1927 Annalen der Physik 389 457

    [56]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision C.02, 2004 (Wallingford CT: Gaussian, Inc.)

    [57]

    Mailhiot C, McMahan A K 1991 Phys. Rev. B 44 11578

    [58]

    Yin M T, Cohen M L 1982 Phys. Rev. B 26 5668

    [59]

    Wang S Q, Ye H Q 2003 J. Phys: Condens. Matter 15 5307

    [60]

    McSkimin H J, Andreatch P 1972 J. Appl. Phys. 43 2944

    [61]

    Dargys A, Kundrotas J 1994 Handbook on Physical Properties of Ge, Si, GaAs and InP (Vilnius: Science and Encyclopedia Publishers)

    [62]

    Papaconstantopoulos D A, Mehl M J, Erwin S C, Pederson M R, 1998 Tight-Binding Approach to Computational Materials Science, edited by Turchi P E A, Gonis A, and Colombo L, MRS Symposia Proceedings 491 (Pittsburg: Materials Research Society) p221

    [63]

    Bermstein N, Mehl M J, Papaconstantopoulos D A, Papanicolaou N I, Bazant M Z, Kaxiras E 2000 Phys. Rev. B 62 4477

    [64]

    Feldman J L, Bernstein N, Papaconstantopoulos D A, Mehl M J 2004 Phys. Rev. B 70 165201

    [65]

    Menon M, Subbaswamy K R 1993 Phys. Rev. B 47 12754

    [66]

    Menon M, Subbaswamy K R 1994 Phys. Rev. B 50 11577

    [67]

    ernstein N, Kaxiras E 1997 Phys. Rev. B 56 10488

    [68]

    Northrup J E 1993 Phys. Rev. B 47 10032

    [69]

    Zhu Z, Shima N, Tsukada M 1989 Phys. Rev. B 40 11868

    [70]

    Chadi D J 1979 Phys. Rev. Lett. 43 43

    [71]

    Chadi D J 1979 J. Vac. Sci. Technol. 16 1290

    [72]

    Cho K, Kaxiras E 1997 Europhys. Lett. 39 287

    [73]

    Cho K, Kaxiras E 1998 Surf. Sci. 396 L261

    [74]

    Takayanagi K, Tanishiro Y, Takahashi S, Takahashi M 1985 Surf. Sci. 164 367

    [75]

    Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S 1985 J. Vac. Sci. Technol. A 3 1502

    [76]

    Chang C M, Wei C M 2003 Phys. Rev. B 67 033309

    [77]

    Sato T, Kitamura S, Iwatsuki M 2000 J. Vac. Sci. Technol. A 18 960

    [78]

    Sato T, Kitamura S, Iwatsuki M 2000 Surf. Sci. 445 130

    [79]

    Hwang I S, Ho M S, Tsong T T 1999 Phys. Rev. Lett. 83 120

    [80]

    Raty J Y, Galli G, Bostedt C, van Buuren T W, Terminello L J 2003 Phys. Rev. Lett. 90 037401

    [81]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [82]

    Laasonen K, Car R, Lee C, Vanderbilt D 1991 Phys. Rev. B 43 6796

    [83]

    Laasonen K, Pasquarello A, Lee C, Car R, Vanderbilt D 1993 Phys. Rev. B 47 10142

    [84]

    Wang Yue, Perdew John P 1991 Phys. Rev. B 44 13298

    [85]

    Jayanthi C S, Wu S Y, Cocks J, Luo N S, Xie Z L, Menon M, Yang G 1998 Phys. Rev. B 57 3799

    [86]

    Wu S Y, Jayanthi C S 2002 Phys. Report 358 1

    [87]

    Tchernatinsky A, Leahy C, Migas D, Yu M, Jayanthi C S, Wu S Y 2005 Bull. Am. Phys. Soc. 50 1

    [88]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [89]

    Pérez-Garrido A 2000 Phys. Rev. B 62 6979

    [90]

    Mykhaylyk O O, Solonin Y, Batchelder D, Brydson R 2005 J. Appl. Phys. 97 074302

    [91]

    Kuzentsov V L, Butenko Y V 2006 Ultrananocrystalline Diamond Synthesis, Properties, and Applications (edited by Shenderova O A, Gruen D M) (New York: William Andrew Publishing) p405

    [92]

    Tian W Q, Yu M, Leahy C, Jayanthi C S, Wu S Y 2009 J. Computat. Theor. Nanosci. 6 390

    [93]

    Journet C, Maser W K, Bernier P, Loiseau A, de la Lamy C M, Lefrant S, Deniard P, Lee R, Fischer J E 1997 Nature 388 756

    [94]

    Dai H, Rinzler A G, Nikolaev P, Thess A, Colbert D T, Smalley R E 1996 Chem. Phys. Lett. 260 471

    [95]

    Cassell A M, Raymakers J A, Kong J, Dai H 1999 J. Phys. Chem. B 103 6484

    [96]

    Franklin N R, Li Y, Chen R J, Jave A, Dai H 2001 Appl. Phys. Lett. 79 4571

    [97]

    Maruyama S, Kojina R, Miyauchi Y, Chiashi S, Kohno M 2002 Chem. Phys. Lett. 360 229

    [98]

    Bronikowski M J, Willis P A, Colbert D T, Smith K A, Smalley R E 2001 J. Vac. Sci. Technol. A 19 1800

    [99]

    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler S G, Colbert D T, Scuseria G E, Tománek D, Fischer J E, Smalley R E 1996 Science 273 483

    [100]

    Takagi D, Homma Y, Hibio H, Suzuki S, Kobayashi Y 2006 Nano Lett. 6 2642

    [101]

    Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Lo Y 2006 Nano. Lett. 6 2928

    [102]

    Sharma R, Rez P, Treacy M M J, Stuart S J 2005 J. Electron Microscopy 54 231

    [103]

    Kumar M, Ando Y 2010 J. Nanosci. Nanotechnol. 6 3739

    [104]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [105]

    Baker R T K, Baker M A, Harris P S, Feates F S, Waite R J 1972 J. Catal. 26 51

    [106]

    Takagi D, Kobayashi Y, Homma Y 2009 J. Am. Chem. Soc. 131 6922

    [107]

    Takagi D, Homma Y, Hibio H, Suzuki S, Kobayashi Y 2007 Nano Lett. 7 2272

    [108]

    Zhu Z, Lu Y, Qiao D, Bai S, Hu T, Li L, Zheng J 2005 J. Am. Chem. Soc. 127 15698

    [109]

    Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C 2001 Phys. Rev. Lett. 87 275504

    [110]

    Charlier J C, de Vita A, Blase X, Car R 1997 Science 275 646

    [111]

    Lee Y H, Kim S G, Tománek D 1997 Phys. Rev. Lett. 78 2393

    [112]

    Raty J Y, Gygi F, Galli G 2005 Phys. Rev. Lett. 95 096103

    [113]

    Fan X, Buczko R, Puretzky A A, Geohegan D B, Howe J Y, Pantelides S T, Pennycook S J 2003 Phys. Rev. Lett. 90 145501

    [114]

    Kanzow H, Ding A 1999 Phys. Rev. B 60 11180

    [115]

    Ding F, Rosén A, Bolton K 2004 Chem. Phys. Lett. 393 309

    [116]

    Shibuta Y, Maruyama S 2003 Eat Transfer-Asian Research 32 690

    [117]

    Shibuta Y, Maruyama S 2003 Chem. Phys. Lett. 382 381

    [118]

    Shibuta Y, Maruyama S 2004 Thermal Sci. Engineer. 12 79

    [119]

    Shibuta Y, Elliott J A 2006 Chem. Phys. Lett. 427 365

    [120]

    Shibuta Y, Maruyama S 2007 Computat. Mater. Sci. 39 842

    [121]

    Elliott J A, Hamm M, Shibuta Y 2009 J. Chem. Phys. 130 034704

    [122]

    Maiti A, Brabec C J, Roland C, Bernholc J 1995 Phys. Rev. B 52 14850

    [123]

    Maiti A, Brabec C J, Bernholc J 1997 Phys. Rev. B 55 R6097

    [124]

    Andriotis A N, Menon M, Froudakis G 2000 Phys. Rev. Lett. 85 3193

    [125]

    Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407

    [126]

    Matsubara M, Massobrio C 2005 J. Phys. Chem. A 109 4415

    [127]

    Matsubara M, Kortus J, Parlebas J C, Massobrio C 2006 Phys. Rev. Lett. 96 155502

    [128]

    Huda M N, Ray A K 2008 Chem. Phys. Lett. 457 124

    [129]

    Wang R X, Zhang J D, Liu C B 2005 Chem. Phys. Lett. 411 333

    [130]

    Pochet P, Genovese L, Caliste D, Rousseau I, Goedecker S, Deutsch T 2010 Phys. Rev. B 82 035431

    [131]

    Gleb P, Natalia D, Elena B, Richard W, Leonid D 2011 Scientific Reports 1 96

    [132]

    Piazza Zachary A, Hi H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nature Commun. 5 3113

    [133]

    Gonzalez S N, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804

    [134]

    Gopakumar G, Nguyen M T, Ceulemans A 2008 Chem. Phys. Lett. 450 175

    [135]

    Ceulemans A, Tshishimbi J, Gopakumar G, Nguyen M T 2008 Chem. Phys. Lett. 461 226

    [136]

    Tunna B, Pederson Mark R, Zope Rajendra R 2008 Phys. Rev. B 78 045408

    [137]

    De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S 2011 Phys. Rev. Lett. 106 225502

    [138]

    Gunasinghe R N, Kah C B, Quarles K D, Wang X Q 2011 Appl. Phys. Lett. 98 261906

    [139]

    Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I 2008 Phys. Rev. Lett. 100 159901

  • [1] Dong Shan-Shan, Qin Li-Guo, Liu Fu-Yao, Gong Li-Hua, Huang Jie-Hui. Quantum evolution speed induced by Hamiltonian. Acta Physica Sinica, 2023, 72(22): 220301. doi: 10.7498/aps.72.20231009
    [2] Liao Qing-Hong, Deng Wei-Can, Wen Jian, Zhou Nan-Run, Liu Nian-Hua. Phonon blockade induced by a non-Hermitian Hamiltonian in a nanomechanical resonator coupled with a qubit. Acta Physica Sinica, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [3] Peng Chu-Cai, Wang Jin-Xiang, Liu Lin-Lin. Effect of medium on nanopowders prepared by Cu wire electrical explosion. Acta Physica Sinica, 2015, 64(7): 075203. doi: 10.7498/aps.64.075203
    [4] Yang Zi-Yuan. Local structure distortion and the spin-Hamiltonian parameters for Fe3+-doped ZnGa2O4 crystal materials. Acta Physica Sinica, 2014, 63(17): 177501. doi: 10.7498/aps.63.177501
    [5] Fan Juan-Juan, Yu Xiu-Ling, Liang Xue-Mei. Self-consistent field simulation of hierarchical self-assembly structures from AB/CD block copolymer blends. Acta Physica Sinica, 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [6] Wei Qun, Yang Zi-Yuan, Wang Can-Jun, Xu Qi-Ming. Effects of excited states for d3 ions on spin-Hamiltonian parameters of the ground state 4A2 in axial-symmetrical crystal field. Acta Physica Sinica, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [7] Lou Zhi-Mei. Form invariance for Hamiltonian Ermakov systems. Acta Physica Sinica, 2005, 54(5): 1969-1971. doi: 10.7498/aps.54.1969
    [8] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport Ⅱ——The calculation and analysis of molecular orbital field in MIM system. Acta Physica Sinica, 2005, 54(5): 2282-2290. doi: 10.7498/aps.54.2282
    [9] Tao Jian-Wu, Shi Yao-Wu, Chang Wen-Xiu. Chaotic anti-control of a port control Hamilton system. Acta Physica Sinica, 2004, 53(6): 1682-1686. doi: 10.7498/aps.53.1682
    [10] Chen Shao-Ying, Xu Hai-Bo, Wang Guang-Rui, Chen Shi-Ga ng. Study on the measure synchronization in coupled Hamiltonian systems*. Acta Physica Sinica, 2004, 53(12): 4098-4110. doi: 10.7498/aps.53.4098
    [11] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport. Acta Physica Sinica, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
    [12] Yang Zi-Yuan. Microscopic origins of the spin-Hamiltonian parameters for 3d2 state ions in a crystal. Acta Physica Sinica, 2004, 53(6): 1981-1988. doi: 10.7498/aps.53.1981
    [13] Cai Hao, Chen Shi-Rong, Huang Nian-Ning. General procedure to formulate Hamiltonian theory of the completely integrable n onlinear equations and its application to the sine-Gordon equation. Acta Physica Sinica, 2003, 52(9): 2206-2212. doi: 10.7498/aps.52.2206
    [14] Chen Zeng-Jun, Ning Xi-Jing. Physical meaning of non-Hermitian Hamiltonian. Acta Physica Sinica, 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [15] LI WEI, CHEN SHI-GANG. AN EXAMPLE OF HAMILTONIAN SYSTEM AND CONTROLLING CHAOS WITH SIMPLE LIMITERS. Acta Physica Sinica, 2001, 50(8): 1434-1439. doi: 10.7498/aps.50.1434
    [16] LAI YUN-ZHONG, LIANG JIU-QING. TIME EVOLUTION OF A QUANTUM SYSTEM WITH HAMILTONIAN CONSISTING OF TIME-DEPENDENT LINEAR COMBINATION OF SU(l, 1)AND SU(2) GENERATORS AND THE HERMITIAN INVARIANT OPERATOR. Acta Physica Sinica, 1996, 45(5): 738-746. doi: 10.7498/aps.45.738
    [17] LI GUO-QIANG, XU GONG-OU. SELFCONSISTENT SEMICLASSICAL CALCULATION OF DEFORMED HI OPTICAL POTENTIALS. Acta Physica Sinica, 1989, 38(4): 534-540. doi: 10.7498/aps.38.534
    [18] LI GUO-QIANG, XU GONG-OU. THE PROPERTITIES OF GIANT RESONANCED ON HOT NUC-LEI STUDIED BY FINITE TEMPERATURE SELFCO-NSISTENT SEMICLASSICAL APPROACH. Acta Physica Sinica, 1989, 38(9): 1413-1421. doi: 10.7498/aps.38.1413
    [19] WANG SHUN-JIN. SELF-CONSISTENT MEAN FIELD IN MANY-BODY CORRELATION DYNAMICS. Acta Physica Sinica, 1988, 37(6): 881-891. doi: 10.7498/aps.37.881
    [20] LIN FU-CHENG, ZHU JI-KANG, HUANG WU-HAN. A GENERALIZED EFFECTIVE SPIN-HAMILTONIAN. Acta Physica Sinica, 1964, 20(11): 1114-1123. doi: 10.7498/aps.20.1114
Metrics
  • Abstract views:  102112
  • PDF Downloads:  267
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2015
  • Accepted Date:  20 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map