Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eigenvalue problems solved by reorthogonalization Lanczos method for the large non-orthonormal sparse matrix

Jiao Bao-Bao

Citation:

Eigenvalue problems solved by reorthogonalization Lanczos method for the large non-orthonormal sparse matrix

Jiao Bao-Bao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using shell model to calculate the nuclear systems in a large model space is an important method in the field of nuclear physics.On the basis of the nuclear shell model,a large symmetric non-orthonormal sparse Hamiltonian matrix is generated when adopting the generalized seniority method to truncate the many-body space.Calculating the energy eigenvalues and energy eigenvectors of the large symmetric non-orthonormal sparse Hamiltonian matrix is of indispensable steps before energies of nucleus are further calculated.In the mean time,some low-lying energy eigenvalues are always the focus of attention on the occasion of large scale shell model calculation.In this paper,by combining reorthogonalization Lanczos method with Cholesky decomposition method and Elementary transformation method,converting the generalized eigenvalue problems into the standard eigenvalue problems,and transforming the large standard eigenvalue problems into the small standard eigenvalue problems,we successfully calculate the eigenvalues and eigenvectors of large non-orthonormal sparse matrices with the help of computers with limited memory.The values obtained by using this method to calculate the small matrix agree with the exact values,which demonstrates that this method is accurate and can be used to calculate the energy eigenvalues and energy eigenvectors of large symmetric nonorthonormal sparse matrix.We take 116Sn (s=8,the number of unpaired particles,namely the generalized seniority) as an example in which there are active valence neutrons but inert protons at the magic number,and calculate ten of its lowest energy eigenvalues.Through calculation,we find that among these low-lying energy eigenvalues,the lowest energy eigenvalue converges fastest.A comparison between the calculation values and the experiment values shows that the difference between the calculated high-lying energy eigenvalue and its corresponding experimental one arrives at hundreds of keV,while for the low-lying energy eigenvalue,its calculation value can reach an accuracy of a few tens of keV.The results demonstrate that the Lanczos method is feasible in Matlab programming and shell model calculations. The significance of this research lies in the fact that this method will not only greatly help to calculate and obtain the low-lying energy eigenvalues of some medium-mass and heavy nuclei,but also possess great importance in calculating partial eigenvalues involved in large matrices in other theoretical researches and engineering designs.
      Corresponding author: Jiao Bao-Bao, baobaojiao91@126.com
    [1]

    Ring P, Schuck P 1980 The Nuclear Many-body Problem (Berlin: Springer-Verlag) pp36-95

    [2]

    Shen J J, Zhao Y M 2009 Sci. China: Ser. G 52 1477

    [3]

    Shen J J, Arima A, Zhao Y M, Yoshinaga N 2008 Phys. Rev. C 78 044305

    [4]

    Zhang L H, Shen J J, Lei Y, Zhao Y M 2008 Int. J. Mod. Phys. E 17 342

    [5]

    Jia L Y 2013 Phy. Rev. C 88 044303

    [6]

    Pittel S, Sandulescu N 2006 Phys. Rev. C 73 014301

    [7]

    Thakur B, Pittel S, Sandulescu N 2008 Phys. Rev. C 78 041303

    [8]

    Papenbrock T, Dean D J 2005 J. Phys. G: Nucl. Part. Phys. 31 S1377

    [9]

    Kruse M K G, Jurgenson E D, Navratil P, Barrett B R, Ormand W E 2013 Phys. Rev. C 87 044301

    [10]

    Han H, Wu L Y, Song N N 2014 Acta Phys. Sin. 63 138901 (in Chinese) [韩华, 吴翎燕, 宋宁宁2014 63 138901]

    [11]

    Li S, Wang B, Hu J Z 2003 Appl. Math. Mech. 24 92

    [12]

    Morris N F 1990 J. Struct. Eng. 116 2049

    [13]

    Jia L Y 2015 J. Phys. G: Nucl. Part. Phys. 42 115105

    [14]

    Qi C, Xu Z X 2012 Phys. Rev. C 86 044323

    [15]

    Simon H D 1984 Math. Comput. 42 115

    [16]

    Zhao X H, Chen F W, Wu J, Zhou Q L 2008 Acta Phys. Chim. Sin. 24 823 (in Chinese) [赵小红, 陈飞武, 吴健, 周巧龙2008物理化学学报24 823]

    [17]

    Cao Z H 1980 Eigenvalue Problems of Matrices (Shanghai: Shanghai Scientific and Technical Publishers) pp212-220(in Chinese) [曹志浩1980矩阵特征值问题(上海:上海科学技术出版社)第212–220页]

    [18]

    Harbrecht H, Peters M, Schneider R 2012 Appl. Numer. Math. 62 428

    [19]

    D'azevedo E, Dongarra J 2000 Pract. Exper. 12 1481

    [20]

    Schweizer S, Kussmann J, Doser B, Ochsenfeld C 2008 J. Comput. Chem. 29 1004

    [21]

    Liu D, Gabrielli L H, Lipson M, Johnson S G 2013 Opt. Exp. 21 12

    [22]

    Giraud L, Langou J 2005 Comput. Math. Appl. 50 1069

    [23]

    Hoffmanm W, Amsterdam 1989 Computing 41 335

    [24]

    Xu S F 1995 Theory and Method of Matrix Calculation (Beijing: Peking University Publishers) pp307-319(in Chinese) [徐树方1995矩阵计算的理论与方法(北京:北京大学出版社)第307–319页]

    [25]

    Qiu Z, Wang X 2005 J. Sound Vib. 282 381

  • [1]

    Ring P, Schuck P 1980 The Nuclear Many-body Problem (Berlin: Springer-Verlag) pp36-95

    [2]

    Shen J J, Zhao Y M 2009 Sci. China: Ser. G 52 1477

    [3]

    Shen J J, Arima A, Zhao Y M, Yoshinaga N 2008 Phys. Rev. C 78 044305

    [4]

    Zhang L H, Shen J J, Lei Y, Zhao Y M 2008 Int. J. Mod. Phys. E 17 342

    [5]

    Jia L Y 2013 Phy. Rev. C 88 044303

    [6]

    Pittel S, Sandulescu N 2006 Phys. Rev. C 73 014301

    [7]

    Thakur B, Pittel S, Sandulescu N 2008 Phys. Rev. C 78 041303

    [8]

    Papenbrock T, Dean D J 2005 J. Phys. G: Nucl. Part. Phys. 31 S1377

    [9]

    Kruse M K G, Jurgenson E D, Navratil P, Barrett B R, Ormand W E 2013 Phys. Rev. C 87 044301

    [10]

    Han H, Wu L Y, Song N N 2014 Acta Phys. Sin. 63 138901 (in Chinese) [韩华, 吴翎燕, 宋宁宁2014 63 138901]

    [11]

    Li S, Wang B, Hu J Z 2003 Appl. Math. Mech. 24 92

    [12]

    Morris N F 1990 J. Struct. Eng. 116 2049

    [13]

    Jia L Y 2015 J. Phys. G: Nucl. Part. Phys. 42 115105

    [14]

    Qi C, Xu Z X 2012 Phys. Rev. C 86 044323

    [15]

    Simon H D 1984 Math. Comput. 42 115

    [16]

    Zhao X H, Chen F W, Wu J, Zhou Q L 2008 Acta Phys. Chim. Sin. 24 823 (in Chinese) [赵小红, 陈飞武, 吴健, 周巧龙2008物理化学学报24 823]

    [17]

    Cao Z H 1980 Eigenvalue Problems of Matrices (Shanghai: Shanghai Scientific and Technical Publishers) pp212-220(in Chinese) [曹志浩1980矩阵特征值问题(上海:上海科学技术出版社)第212–220页]

    [18]

    Harbrecht H, Peters M, Schneider R 2012 Appl. Numer. Math. 62 428

    [19]

    D'azevedo E, Dongarra J 2000 Pract. Exper. 12 1481

    [20]

    Schweizer S, Kussmann J, Doser B, Ochsenfeld C 2008 J. Comput. Chem. 29 1004

    [21]

    Liu D, Gabrielli L H, Lipson M, Johnson S G 2013 Opt. Exp. 21 12

    [22]

    Giraud L, Langou J 2005 Comput. Math. Appl. 50 1069

    [23]

    Hoffmanm W, Amsterdam 1989 Computing 41 335

    [24]

    Xu S F 1995 Theory and Method of Matrix Calculation (Beijing: Peking University Publishers) pp307-319(in Chinese) [徐树方1995矩阵计算的理论与方法(北京:北京大学出版社)第307–319页]

    [25]

    Qiu Z, Wang X 2005 J. Sound Vib. 282 381

  • [1] Fan Jiu-Yang, Zhang Yu-Xian, Feng Xiao-Li, Huang Zhi-Xiang. Rapid-Transfer Matrix Method for Analysis of Electromagnetic Properties of Uniaxial/Biaxial Biaxially Anisotropic Media. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241346
    [2] Zhang Hui-Jie, He Kan. Depiction of Hamiltonian PT-symmetry. Acta Physica Sinica, 2024, 73(4): 040302. doi: 10.7498/aps.73.20230458
    [3] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [4] Dong Shan-Shan, Qin Li-Guo, Liu Fu-Yao, Gong Li-Hua, Huang Jie-Hui. Quantum evolution speed induced by Hamiltonian. Acta Physica Sinica, 2023, 72(22): 220301. doi: 10.7498/aps.72.20231009
    [5] Liao Qing-Hong, Deng Wei-Can, Wen Jian, Zhou Nan-Run, Liu Nian-Hua. Phonon blockade induced by a non-Hermitian Hamiltonian in a nanomechanical resonator coupled with a qubit. Acta Physica Sinica, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [6] Sun Juan, Li Xiao-Xia, Zhang Jin-Hao, Shen Yu-Zhuo, Li Yan-Yu. Synchronizability and eigenvalues of multilayer star networks through unidirectionally coupling. Acta Physica Sinica, 2017, 66(18): 188901. doi: 10.7498/aps.66.188901
    [7] Xu Ming-Ming, Lu Jun-An, Zhou Jin. Synchronizability and eigenvalues of two-layer star networks. Acta Physica Sinica, 2016, 65(2): 028902. doi: 10.7498/aps.65.028902
    [8] Hao Ben-Jian, Li Zan, Wan Peng-Wu, Si Jiang-Bo. Passive source localization using RROA based on eigenvalue decomposition algorithm in WSNs. Acta Physica Sinica, 2014, 63(5): 054304. doi: 10.7498/aps.63.054304
    [9] He Sheng-Zhong, Zhou Guo-Hua, Xu Jian-Ping, Wu Song-Rong, Yan Tie-Sheng, Zhang Xi. Precise modeling and dynamic characteristics of valley V2 controlled Boost converter. Acta Physica Sinica, 2014, 63(17): 170503. doi: 10.7498/aps.63.170503
    [10] Liang Yi, Wang Xing-Yuan. Pinning chaotic synchronization in complex networks on maximum eigenvalue of low order matrix. Acta Physica Sinica, 2012, 61(3): 038901. doi: 10.7498/aps.61.038901
    [11] Ji Ying, Bi Qin-Sheng. Bifurcation analysis of slow-fast behavior in modified Chua's circuit. Acta Physica Sinica, 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [12] Zhu Ting-Xiang, Wu Ye, Xiao Jing-Hua. An efficient adaptive method of improving the synchronization of complex networks. Acta Physica Sinica, 2012, 61(4): 040502. doi: 10.7498/aps.61.040502
    [13] Chen Zeng-Jun, Ning Xi-Jing. Physical meaning of non-Hermitian Hamiltonian. Acta Physica Sinica, 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [14] LAI JIAN-WEN, ZHOU SHI-PING, LI GUO-HUI, XU DE-MING. A METHOD FOR COMPUTING LYAPUNOV EXPONENTS SPECTRA WITHOUT REORTHOGONALIZATION. Acta Physica Sinica, 2000, 49(12): 2328-2332. doi: 10.7498/aps.49.2328
    [15] JIANG QI, TAO RUI-BAO. REAL-SPACE RENORMALIZATION STUDY OF TIGHT-BIN-DING HAMILTONIAN WITH ARBITRARY BAND FILLING. Acta Physica Sinica, 1989, 38(11): 1778-1784. doi: 10.7498/aps.38.1778
    [16] ZHOU QING. DIAGONALIZATION OF HAMILTONIAN FOR VIBRATION OF AB ALLOYS. Acta Physica Sinica, 1988, 37(6): 1003-1009. doi: 10.7498/aps.37.1003
    [17] WANG ZHENG-XING. AN APPROXIMATE HAMILTONIAN OF SUPERCONDUCTOR TUNNELING SYSTEM TREATED BY VARIATIONAL METHOD. Acta Physica Sinica, 1979, 28(5): 48-58. doi: 10.7498/aps.28.48
    [18] LIN FU-CHENG, ZHU JI-KANG, HUANG WU-HAN. A GENERALIZED EFFECTIVE SPIN-HAMILTONIAN. Acta Physica Sinica, 1964, 20(11): 1114-1123. doi: 10.7498/aps.20.1114
    [19] О ТЕОРИИ ОБОЛОЧНЫХ СТРУКТУР ЯДЕР. Acta Physica Sinica, 1959, 15(8): 420-439. doi: 10.7498/aps.15.420
    [20] YANG LI-MING. ORBITAL ANGULAR MOMENTUM DISTRIBUTION IN NUCLEI AND NUCLEAR DENSITY. Acta Physica Sinica, 1953, 9(4): 302-316. doi: 10.7498/aps.9.302
Metrics
  • Abstract views:  7774
  • PDF Downloads:  796
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2016
  • Accepted Date:  05 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map