-
Does thermodynamics still hold true for mecroscopic small systems with only limited degrees of freedom? Do concepts such as temperature, entropy, work done, heat transfer, isothermal processes, and the Carnot cycle remain valid? Does the thermodynamic theory for small systems need modifying or supplementing compared with traditional thermodynamics applicable to macroscopic systems? Taking a single-particle system for example, we investigate the applicability of thermodynamic concepts and laws in small systems. We have found that thermodynamic laws still hold true in small systems at an ensemble-averaged level. After considering the information erasure of the Maxwell’s demon, the second law of thermodynamics is not violated. Additionally, ‘small systems’ bring some new features. Fluctuations in thermodynamic quantities become prominent. In any process far from equilibrium, the distribution functions of thermodynamic quantities satisfy certain rigorously established identities. These identities are known as fluctuation theorems. The second law of thermodynamics can be derived from them. Therefore, fluctuation theorems can be considered an upgradation to the second law of thermodynamics. They enable physicists to obtain equilibrium properties (e.g. free energy difference) by measuring physical quantities associated with non-equilibrium processes (e.g. work distributions). Furthermore, despite some distinct quantum features, the performance of quantum heat engine does not outperform that of classical heat engine. The introduction of motion equations into small system makes the relationship between thermodynamics and mechanics closer than before. Physicists can study energy dissipation in non-equilibrium process and optimize the power and efficiency of heat engine from the first principle. These findings enrich the content of thermodynamic theory and provide new ideas for establishing a general framework for non-equilibrium thermodynamics.
-
Keywords:
- stochastic thermodynamics /
- finite-time thermodynamics /
- quantum thermodynamics /
- noncanonical thermalization
[1] Scovil H E D, Schulz-DuBois E O 1959 Phys. Rev. Lett. 2 262
Google Scholar
[2] Geusic J E, Schulz-DuBios E O, Scovil H E D 1967 Phys. Rev. 156 343
Google Scholar
[3] Alicki R 1979 J. Phys. A: Math. Gen. 12 L103
[4] Kosloff R 2013 Entropy 15 2100
Google Scholar
[5] Kieu T D 2004 Phys. Rev. Lett. 93 140403
Google Scholar
[6] Kieu T D 2006 Eur. Phys. J. D 39 115
Google Scholar
[7] Scully M O 2003 Science 299 862
Google Scholar
[8] Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122
Google Scholar
[9] Quan H T, Liu Y xi, Sun C P, Nori F 2007 Phys. Rev. E 76 031105
Google Scholar
[10] Binder F, Correa L A, Gogolin C, Anders J, Adesso G 2018 Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions (Cham: Springer International Publishing
[11] Callen H B 1985 Thermodynamics and An Introduction to Thermostatistics (2nd Ed.) (New York: J. Wiley & Sons
[12] Schrödinger E 1989 Statistical Thermodynamics (New York: Dover Publications
[13] Reif F 2009 Fundamentals of Statistical and Thermal Physics (Waveland Press
[14] Hill T L 2013 Thermodynamics of Small Systems (New York: Dover Publications, Inc
[15] Allahverdyan A E, Serral Gracià R, Nieuwenhuizen Th M 2005 Phys. Rev. E 71 046106
Google Scholar
[16] Leff H S, Rex A F 2003 Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Philadelphia: Institute of Physics
[17] Szilard L 1929 Z. Physik 53 840
Google Scholar
[18] Landauer R 1961 IBM J. Res. Dev. 5 183
Google Scholar
[19] Bennett C H 1982 Int. J. Theor. Phys. 21 905
Google Scholar
[20] Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E 2012 Nature 483 187
Google Scholar
[21] Parrondo J M R, Horowitz J M, Sagawa T 2015 Nat. Phys. 11 131
Google Scholar
[22] Quan H T, Wang Y D, Liu Y xi, Sun C P, Nori F 2006 Phys. Rev. Lett. 97 180402
Google Scholar
[23] 孙昌璞, 全海涛 2013 物理 42 756
Sun C P, Quan H T 2013 Physics 42 756
[24] Dong H, Xu D Z, Cai C Y, Sun C P 2011 Phys. Rev. E 83 061108
Google Scholar
[25] Cai C Y, Dong H, Sun C P 2012 Phys. Rev. E 85 031114
Google Scholar
[26] Mandal D, Quan H T, Jarzynski C 2013 Phys. Rev. Lett. 111 030602
Google Scholar
[27] Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234
Google Scholar
[28] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
Google Scholar
[29] Jarzynski C 2011 Annu. Rev. Condens. Matter Phys. 2 329
Google Scholar
[30] Jarzynski C 1997 Phys. Rev. E 56 5018
Google Scholar
[31] Sekimoto K 1998 Prog. Theor. Phys. Suppl. 130 17
Google Scholar
[32] Seifert U 2012 Rep. Prog. Phys. 75 126001
Google Scholar
[33] Oono Y, Paniconi M 1998 Prog. Theor. Phys. Suppl. 130 29
Google Scholar
[34] Hatano T, Sasa S ichi 2001 Phys. Rev. Lett. 86 3463
Google Scholar
[35] Sekimoto K 2010 Stochastic Energetics (Berlin Heidelberg: Springer
[36] Jiang D Q, Qian M, Qian M P 2004 Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems (Berlin: Springer
[37] Esposito M, van den Broeck C 2010 Phys. Rev. Lett. 104 090601
Google Scholar
[38] Kim K H, Qian H 2004 Phys. Rev. Lett. 93 120602
Google Scholar
[39] 葛颢 2014 数学进展 43 161
Ge J 2014 Adv. Math. 43 161
[40] Jarzynskia C 2008 Eur. Phys. J. B 64 331
Google Scholar
[41] Liphardt J, Dumont S, Smith S B, Tinoco I, Bustamante C 2002 Science 296 1832
Google Scholar
[42] Collin D, Ritort F, Jarzynski C, Smith S B, Tinoco I, Bustamante C 2005 Nature 437 231
Google Scholar
[43] Crooks G E 1999 Phys. Rev. E 60 2721
Google Scholar
[44] Hummer G, Szabo A 2001 Proc. Natl. Acad. Sci. USA 98 3658
Google Scholar
[45] Jarzynski C 2000 J. Stat. Phys. 98 77
Google Scholar
[46] Maragakis P, Spichty M, Karplus M 2008 J. Phys. Chem. B 112 6168
Google Scholar
[47] Hoang T M, Pan R, Ahn J, Bang J, Quan H T, Li T 2018 Phys. Rev. Lett. 120 080602
Google Scholar
[48] Jarzynski C, Wójcik D K 2004 Phys. Rev. Lett. 92 230602
Google Scholar
[49] Chen J F, Quan H T 2023 Phys. Rev. E 107 024135
Google Scholar
[50] Evans D J, Cohen E G D, Morriss G P 1993 Phys. Rev. Lett. 71 2401
Google Scholar
[51] Evans D J, Searles D J 1994 Phys. Rev. E 50 1645
[52] Gallavotti G, Cohen E G D 1995 Phys. Rev. Lett. 74 2694
Google Scholar
[53] Gallavotti G, Cohen E G D 1995 J. Stat. Phys. 80 931
Google Scholar
[54] Barato A C, Seifert U 2015 Phys. Rev. Lett. 114 158101
Google Scholar
[55] Timpanaro A M, Guarnieri G, Goold J, Landi G T 2019 Phys. Rev. Lett. 123 090604
Google Scholar
[56] Kurchan J 2000 A Quantum Fluctuation Theorem (arXiv:cond-mat/0007360
[57] Tasaki H 2000 Jarzynski Relations for Quantum Systems and Some Applications (arXiv:cond-mat/0009244
[58] Talkner P, Lutz E, Hänggi P 2007 Phys. Rev. E 75 050102
Google Scholar
[59] Dorner R, Clark S R, Heaney L, Fazio R, Goold J, Vedral V 2013 Phys. Rev. Lett. 110 230601
Google Scholar
[60] Mazzola L, De Chiara G, Paternostro M 2013 Phys. Rev. Lett. 110 230602
Google Scholar
[61] Batalhão T B, Souza A M, Mazzola L, Auccaise R, Sarthour R S, Oliveira I S, Goold J, De Chiara G, Paternostro M, Serra R M 2014 Phys. Rev. Lett. 113 140601
Google Scholar
[62] An S, Zhang J N, Um M, Lv D, Lu Y, Zhang J, Yin Z Q, Quan H T, Kim K 2015 Nat. Phys. 11 193
Google Scholar
[63] Jarzynski C, Quan H T, Rahav S 2015 Phys. Rev. X 5 031038
Google Scholar
[64] Funo K, Quan H T 2018 Phys. Rev. Lett. 121 040602
Google Scholar
[65] Gong Z, Lan Y, Quan H T 2016 Phys. Rev. Lett. 117 180603
Google Scholar
[66] Fei Z, Zhang J, Pan R, Qiu T, Quan H T 2019 Phys. Rev. A 99 052508
Google Scholar
[67] Fei Z, Quan H T 2020 Phys. Rev. Lett. 124 240603
Google Scholar
[68] Funo K, Quan H T 2018 Phys. Rev. E 98 012113
Google Scholar
[69] Chen J F, Qiu T, Quan H T 2021 Entropy 23 1602
Google Scholar
[70] Wang B, Zhang J, Quan H T 2018 Phys. Rev. E 97 052136
Google Scholar
[71] Chen J, Dong H, Sun C P 2018 Phys. Rev. E 98 062119
Google Scholar
[72] Tasaki H 1998 Phys. Rev. Lett. 80 1373
Google Scholar
[73] Goldstein S, Lebowitz J L, Tumulka R, Zanghì N 2006 Phys. Rev. Lett. 96 050403
Google Scholar
[74] Popescu S, Short A J, Winter A 2006 Nat. Phys. 2 754
Google Scholar
[75] Dong H, Yang S, Liu X F, Sun C P 2007 Phys. Rev. A 76 044104
Google Scholar
[76] Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042
Google Scholar
[77] Zhang B, Cai Q Y, You L, Zhan M S 2009 Phys. Lett. B 675 98
Google Scholar
[78] Dong H, Cai Q Y, Liu X F, Sun C P 2014 Commun. Theor. Phys. 61 289
Google Scholar
[79] Ma Y H, Cai Q Y, Dong H, Sun C P 2018 EPL 122 30001
Google Scholar
[80] Srednicki M 1994 Phys. Rev. E 50 888
Google Scholar
[81] D’Alessio L, Kafri Y, Polkovnikov A, Rigol M 2016 Adv. Phys. 65 239
Google Scholar
[82] Yvon J 1955 Proceedings of the International Conference on the Peaceful Uses of Atomic Energy Geneva, Switzerland, August 8—20, 1955
[83] Curzon F L, Ahlborn B 1975 Am. J. Phys. 43 22
Google Scholar
[84] Andresen B, Salamon P, Berry R S 1984 Phys. Today 37 62
Google Scholar
[85] Chen J C, Su S H, Su G Z 2023 Reflection and Exploration on Hot Issues in Thermodynamics and Statistical Physics (2nd Ed.) (Beijing: Science Press) [陈金灿, 苏山河, 苏国珍 2023 热力学与统计物理学热点问题思考与探索(第二版)(北京: 科学出版社)
Chen J C, Su S H, Su G Z 2023 Reflection and Exploration on Hot Issues in Thermodynamics and Statistical Physics (2nd Ed.) (Beijing: Science Press) [86] Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. Lett. 105 150603
Google Scholar
[87] Ma Y H, Xu D, Dong H, Sun C P 2018 Phys. Rev. E 98 042112
Google Scholar
[88] Ryabov A, Holubec V 2016 Phys. Rev. E 93 050101
Google Scholar
[89] Long R, Liu W 2016 Phys. Rev. E 94 052114
Google Scholar
[90] Chen J F, Sun C P, Dong H 2019 Phys. Rev. E 100 062140
Google Scholar
[91] Chen J F, Sun C P, Dong H 2019 Phys. Rev. E 100 032144
Google Scholar
[92] Ma Y H, Xu D, Dong H, Sun C P 2018 Phys. Rev. E 98 022133
Google Scholar
[93] Cavina V, Mari A, Giovannetti V 2017 Phys. Rev. Lett. 119 050601
Google Scholar
[94] Ma Y H, Zhai R X, Chen J, Sun C P, Dong H 2020 Phys. Rev. Lett. 125 210601
Google Scholar
[95] Blickle V, Bechinger C 2012 Nat. Phys. 8 143
Google Scholar
[96] Roßnagel J, Dawkins S T, Tolazzi K N, Abah O, Lutz E, Schmidt-Kaler F, Singer K 2016 Science 352 325
Google Scholar
[97] Martínez I A, Roldán É, Dinis L, Petrov D, Parrondo J M R, Rica R A 2016 Nat. Phys. 12 67
Google Scholar
[98] Zhai R X, Cui F M, Ma Y H, Sun C P, Dong H 2023 Phys. Rev. E 107 L042101
Google Scholar
[99] Tu Z C 2021 Front. Phys. 16 33202
Google Scholar
[100] Salamon P, Berry R S 1983 Phys. Rev. Lett. 51 1127
Google Scholar
[101] Weinhold F 1975 J. Chem. Phys. 63 2479
Google Scholar
[102] Ruppeiner G 1979 Phys. Rev. A 20 1608
Google Scholar
[103] Crooks G E 2007 Phys. Rev. Lett. 99 100602
Google Scholar
[104] Scandi M, Perarnau-Llobet M 2019 Quantum 3 197
Google Scholar
[105] Abiuso P, Miller H J D, Perarnau-Llobet M, Scandi M 2020 Entropy 22 1076
Google Scholar
[106] Chen J F, Sun C P, Dong H 2021 Phys. Rev. E 104 034117
Google Scholar
[107] Li G, Chen J F, Sun C P, Dong H 2022 Phys. Rev. Lett. 128 230603
Google Scholar
[108] Li G, Quan H T, Tu Z C 2017 Phys. Rev. E 96 012144
Google Scholar
[109] Chen J F 2022 Phys. Rev. E 106 054108
[110] Van Vu T, Hasegawa Y 2021 Phys. Rev. Lett. 126 010601
Google Scholar
[111] Dago S, Pereda J, Barros N, Ciliberto S, Bellon L 2021 Phys. Rev. Lett. 126 170601
Google Scholar
[112] Zhen Y Z, Egloff D, Modi K, Dahlsten O 2021 Phys. Rev. Lett. 127 190602
Google Scholar
[113] Ma Y H, Chen J F, Sun C P, Dong H 2022 Phys. Rev. E 106 034112
Google Scholar
[114] Tsirlin A M, Kazakov V, Zubov D V 2002 J. Phys. Chem. A 106 10926
Google Scholar
[115] Chen J F, Zhai R X, Sun C P, Dong H 2023 PRX Energy 2 033003
Google Scholar
-
图 4 一个基于二能级量子系统的量子Carnot热机循环, $ {T}_{{\mathrm{h}}} $和$ {T}_{{\mathrm{l}}} $分别代表高温和低温热库的温度, $ \varDelta $和$ {P}_{{\mathrm{e}}} $代表二能级系统的能级差和激发态上的布居数, $ P $和$ V $代表经典理想气体的压强和体积
Figure 4. A quantum Carnot cycle based on a two-level system, $ {T}_{{\mathrm{h}}} $ and $ {T}_{{\mathrm{l}}} $ denote the temperatures of two reservoirs, $ \varDelta $ and $ {P}_{{\mathrm{e}}} $ denote the level spacing and the probability in the excited state, $ P $ and $ V $ denote the pressure and the volume of the ideal gas.
图 10 有限时间Carnot循环的功率效率约束关系 (a)基于二能级系统的有限时间量子Carnot循环; (b)量子Carnot循环中功率-效率和一般约束关系的对比, 其中图中的棕色虚线和灰色点线是由(25)式给出, 绿色三角代表最大功率的位置
Figure 10. The power-efficiency constraints of a finite-time Carnot cycle: (a) Finite-time quantum Carnot cycle based on a two-level system; (b) comparison between power-efficiency and general constraint relationships in a quantum Carnot cycle, where the brown dashed line and gray dotted line in the graph are given by Eq. (25), and the green triangles represent the positions of maximum power.
图 11 有限时间热力学$ 1/\tau $关系的实验验证 (a) 温度50 ℃下做功的$ 1/\tau $ 标度关系; (b) 标度关系的系数对操控方式的依赖关系$ L\left(t\right)={L}_{0}\propto {t}^{\alpha } $, 能量损耗最优操控是匀速控制$ \alpha =1 $
Figure 11. Experimental verification of the finite-time thermodynamic $ 1/\tau $ relationship: (a) The 1/τ scaling relationship for work done at a temperature of 50 ℃; (b) the dependence of the scaling relationship coefficient on the control method $ L\left(t\right)={L}_{0}\propto {t}^{\alpha }, $ with the energy-optimal control being uniform-speed control where $ \alpha =1 $.
图 12 有限时间Carnot循环 (a)有限时间Carnot循环的工作示意图; (b)循环中功率-效率约束关系; (c)最大功率效率对Carnot效率的依赖关系ηEMP = (0.524 ± 0.034)ηC
Figure 12. Finite-time Carnot cycle: (a) Schematic diagram of the finite-time Carnot cycle; (b) graph of the power-efficiency constraint relationship in the cycle; (c) dependency of maximum power efficiency on Carnot efficiency ηEMP = (0.524 ± 0.034)ηC.
-
[1] Scovil H E D, Schulz-DuBois E O 1959 Phys. Rev. Lett. 2 262
Google Scholar
[2] Geusic J E, Schulz-DuBios E O, Scovil H E D 1967 Phys. Rev. 156 343
Google Scholar
[3] Alicki R 1979 J. Phys. A: Math. Gen. 12 L103
[4] Kosloff R 2013 Entropy 15 2100
Google Scholar
[5] Kieu T D 2004 Phys. Rev. Lett. 93 140403
Google Scholar
[6] Kieu T D 2006 Eur. Phys. J. D 39 115
Google Scholar
[7] Scully M O 2003 Science 299 862
Google Scholar
[8] Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122
Google Scholar
[9] Quan H T, Liu Y xi, Sun C P, Nori F 2007 Phys. Rev. E 76 031105
Google Scholar
[10] Binder F, Correa L A, Gogolin C, Anders J, Adesso G 2018 Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions (Cham: Springer International Publishing
[11] Callen H B 1985 Thermodynamics and An Introduction to Thermostatistics (2nd Ed.) (New York: J. Wiley & Sons
[12] Schrödinger E 1989 Statistical Thermodynamics (New York: Dover Publications
[13] Reif F 2009 Fundamentals of Statistical and Thermal Physics (Waveland Press
[14] Hill T L 2013 Thermodynamics of Small Systems (New York: Dover Publications, Inc
[15] Allahverdyan A E, Serral Gracià R, Nieuwenhuizen Th M 2005 Phys. Rev. E 71 046106
Google Scholar
[16] Leff H S, Rex A F 2003 Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Philadelphia: Institute of Physics
[17] Szilard L 1929 Z. Physik 53 840
Google Scholar
[18] Landauer R 1961 IBM J. Res. Dev. 5 183
Google Scholar
[19] Bennett C H 1982 Int. J. Theor. Phys. 21 905
Google Scholar
[20] Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E 2012 Nature 483 187
Google Scholar
[21] Parrondo J M R, Horowitz J M, Sagawa T 2015 Nat. Phys. 11 131
Google Scholar
[22] Quan H T, Wang Y D, Liu Y xi, Sun C P, Nori F 2006 Phys. Rev. Lett. 97 180402
Google Scholar
[23] 孙昌璞, 全海涛 2013 物理 42 756
Sun C P, Quan H T 2013 Physics 42 756
[24] Dong H, Xu D Z, Cai C Y, Sun C P 2011 Phys. Rev. E 83 061108
Google Scholar
[25] Cai C Y, Dong H, Sun C P 2012 Phys. Rev. E 85 031114
Google Scholar
[26] Mandal D, Quan H T, Jarzynski C 2013 Phys. Rev. Lett. 111 030602
Google Scholar
[27] Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234
Google Scholar
[28] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
Google Scholar
[29] Jarzynski C 2011 Annu. Rev. Condens. Matter Phys. 2 329
Google Scholar
[30] Jarzynski C 1997 Phys. Rev. E 56 5018
Google Scholar
[31] Sekimoto K 1998 Prog. Theor. Phys. Suppl. 130 17
Google Scholar
[32] Seifert U 2012 Rep. Prog. Phys. 75 126001
Google Scholar
[33] Oono Y, Paniconi M 1998 Prog. Theor. Phys. Suppl. 130 29
Google Scholar
[34] Hatano T, Sasa S ichi 2001 Phys. Rev. Lett. 86 3463
Google Scholar
[35] Sekimoto K 2010 Stochastic Energetics (Berlin Heidelberg: Springer
[36] Jiang D Q, Qian M, Qian M P 2004 Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems (Berlin: Springer
[37] Esposito M, van den Broeck C 2010 Phys. Rev. Lett. 104 090601
Google Scholar
[38] Kim K H, Qian H 2004 Phys. Rev. Lett. 93 120602
Google Scholar
[39] 葛颢 2014 数学进展 43 161
Ge J 2014 Adv. Math. 43 161
[40] Jarzynskia C 2008 Eur. Phys. J. B 64 331
Google Scholar
[41] Liphardt J, Dumont S, Smith S B, Tinoco I, Bustamante C 2002 Science 296 1832
Google Scholar
[42] Collin D, Ritort F, Jarzynski C, Smith S B, Tinoco I, Bustamante C 2005 Nature 437 231
Google Scholar
[43] Crooks G E 1999 Phys. Rev. E 60 2721
Google Scholar
[44] Hummer G, Szabo A 2001 Proc. Natl. Acad. Sci. USA 98 3658
Google Scholar
[45] Jarzynski C 2000 J. Stat. Phys. 98 77
Google Scholar
[46] Maragakis P, Spichty M, Karplus M 2008 J. Phys. Chem. B 112 6168
Google Scholar
[47] Hoang T M, Pan R, Ahn J, Bang J, Quan H T, Li T 2018 Phys. Rev. Lett. 120 080602
Google Scholar
[48] Jarzynski C, Wójcik D K 2004 Phys. Rev. Lett. 92 230602
Google Scholar
[49] Chen J F, Quan H T 2023 Phys. Rev. E 107 024135
Google Scholar
[50] Evans D J, Cohen E G D, Morriss G P 1993 Phys. Rev. Lett. 71 2401
Google Scholar
[51] Evans D J, Searles D J 1994 Phys. Rev. E 50 1645
[52] Gallavotti G, Cohen E G D 1995 Phys. Rev. Lett. 74 2694
Google Scholar
[53] Gallavotti G, Cohen E G D 1995 J. Stat. Phys. 80 931
Google Scholar
[54] Barato A C, Seifert U 2015 Phys. Rev. Lett. 114 158101
Google Scholar
[55] Timpanaro A M, Guarnieri G, Goold J, Landi G T 2019 Phys. Rev. Lett. 123 090604
Google Scholar
[56] Kurchan J 2000 A Quantum Fluctuation Theorem (arXiv:cond-mat/0007360
[57] Tasaki H 2000 Jarzynski Relations for Quantum Systems and Some Applications (arXiv:cond-mat/0009244
[58] Talkner P, Lutz E, Hänggi P 2007 Phys. Rev. E 75 050102
Google Scholar
[59] Dorner R, Clark S R, Heaney L, Fazio R, Goold J, Vedral V 2013 Phys. Rev. Lett. 110 230601
Google Scholar
[60] Mazzola L, De Chiara G, Paternostro M 2013 Phys. Rev. Lett. 110 230602
Google Scholar
[61] Batalhão T B, Souza A M, Mazzola L, Auccaise R, Sarthour R S, Oliveira I S, Goold J, De Chiara G, Paternostro M, Serra R M 2014 Phys. Rev. Lett. 113 140601
Google Scholar
[62] An S, Zhang J N, Um M, Lv D, Lu Y, Zhang J, Yin Z Q, Quan H T, Kim K 2015 Nat. Phys. 11 193
Google Scholar
[63] Jarzynski C, Quan H T, Rahav S 2015 Phys. Rev. X 5 031038
Google Scholar
[64] Funo K, Quan H T 2018 Phys. Rev. Lett. 121 040602
Google Scholar
[65] Gong Z, Lan Y, Quan H T 2016 Phys. Rev. Lett. 117 180603
Google Scholar
[66] Fei Z, Zhang J, Pan R, Qiu T, Quan H T 2019 Phys. Rev. A 99 052508
Google Scholar
[67] Fei Z, Quan H T 2020 Phys. Rev. Lett. 124 240603
Google Scholar
[68] Funo K, Quan H T 2018 Phys. Rev. E 98 012113
Google Scholar
[69] Chen J F, Qiu T, Quan H T 2021 Entropy 23 1602
Google Scholar
[70] Wang B, Zhang J, Quan H T 2018 Phys. Rev. E 97 052136
Google Scholar
[71] Chen J, Dong H, Sun C P 2018 Phys. Rev. E 98 062119
Google Scholar
[72] Tasaki H 1998 Phys. Rev. Lett. 80 1373
Google Scholar
[73] Goldstein S, Lebowitz J L, Tumulka R, Zanghì N 2006 Phys. Rev. Lett. 96 050403
Google Scholar
[74] Popescu S, Short A J, Winter A 2006 Nat. Phys. 2 754
Google Scholar
[75] Dong H, Yang S, Liu X F, Sun C P 2007 Phys. Rev. A 76 044104
Google Scholar
[76] Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042
Google Scholar
[77] Zhang B, Cai Q Y, You L, Zhan M S 2009 Phys. Lett. B 675 98
Google Scholar
[78] Dong H, Cai Q Y, Liu X F, Sun C P 2014 Commun. Theor. Phys. 61 289
Google Scholar
[79] Ma Y H, Cai Q Y, Dong H, Sun C P 2018 EPL 122 30001
Google Scholar
[80] Srednicki M 1994 Phys. Rev. E 50 888
Google Scholar
[81] D’Alessio L, Kafri Y, Polkovnikov A, Rigol M 2016 Adv. Phys. 65 239
Google Scholar
[82] Yvon J 1955 Proceedings of the International Conference on the Peaceful Uses of Atomic Energy Geneva, Switzerland, August 8—20, 1955
[83] Curzon F L, Ahlborn B 1975 Am. J. Phys. 43 22
Google Scholar
[84] Andresen B, Salamon P, Berry R S 1984 Phys. Today 37 62
Google Scholar
[85] Chen J C, Su S H, Su G Z 2023 Reflection and Exploration on Hot Issues in Thermodynamics and Statistical Physics (2nd Ed.) (Beijing: Science Press) [陈金灿, 苏山河, 苏国珍 2023 热力学与统计物理学热点问题思考与探索(第二版)(北京: 科学出版社)
Chen J C, Su S H, Su G Z 2023 Reflection and Exploration on Hot Issues in Thermodynamics and Statistical Physics (2nd Ed.) (Beijing: Science Press) [86] Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. Lett. 105 150603
Google Scholar
[87] Ma Y H, Xu D, Dong H, Sun C P 2018 Phys. Rev. E 98 042112
Google Scholar
[88] Ryabov A, Holubec V 2016 Phys. Rev. E 93 050101
Google Scholar
[89] Long R, Liu W 2016 Phys. Rev. E 94 052114
Google Scholar
[90] Chen J F, Sun C P, Dong H 2019 Phys. Rev. E 100 062140
Google Scholar
[91] Chen J F, Sun C P, Dong H 2019 Phys. Rev. E 100 032144
Google Scholar
[92] Ma Y H, Xu D, Dong H, Sun C P 2018 Phys. Rev. E 98 022133
Google Scholar
[93] Cavina V, Mari A, Giovannetti V 2017 Phys. Rev. Lett. 119 050601
Google Scholar
[94] Ma Y H, Zhai R X, Chen J, Sun C P, Dong H 2020 Phys. Rev. Lett. 125 210601
Google Scholar
[95] Blickle V, Bechinger C 2012 Nat. Phys. 8 143
Google Scholar
[96] Roßnagel J, Dawkins S T, Tolazzi K N, Abah O, Lutz E, Schmidt-Kaler F, Singer K 2016 Science 352 325
Google Scholar
[97] Martínez I A, Roldán É, Dinis L, Petrov D, Parrondo J M R, Rica R A 2016 Nat. Phys. 12 67
Google Scholar
[98] Zhai R X, Cui F M, Ma Y H, Sun C P, Dong H 2023 Phys. Rev. E 107 L042101
Google Scholar
[99] Tu Z C 2021 Front. Phys. 16 33202
Google Scholar
[100] Salamon P, Berry R S 1983 Phys. Rev. Lett. 51 1127
Google Scholar
[101] Weinhold F 1975 J. Chem. Phys. 63 2479
Google Scholar
[102] Ruppeiner G 1979 Phys. Rev. A 20 1608
Google Scholar
[103] Crooks G E 2007 Phys. Rev. Lett. 99 100602
Google Scholar
[104] Scandi M, Perarnau-Llobet M 2019 Quantum 3 197
Google Scholar
[105] Abiuso P, Miller H J D, Perarnau-Llobet M, Scandi M 2020 Entropy 22 1076
Google Scholar
[106] Chen J F, Sun C P, Dong H 2021 Phys. Rev. E 104 034117
Google Scholar
[107] Li G, Chen J F, Sun C P, Dong H 2022 Phys. Rev. Lett. 128 230603
Google Scholar
[108] Li G, Quan H T, Tu Z C 2017 Phys. Rev. E 96 012144
Google Scholar
[109] Chen J F 2022 Phys. Rev. E 106 054108
[110] Van Vu T, Hasegawa Y 2021 Phys. Rev. Lett. 126 010601
Google Scholar
[111] Dago S, Pereda J, Barros N, Ciliberto S, Bellon L 2021 Phys. Rev. Lett. 126 170601
Google Scholar
[112] Zhen Y Z, Egloff D, Modi K, Dahlsten O 2021 Phys. Rev. Lett. 127 190602
Google Scholar
[113] Ma Y H, Chen J F, Sun C P, Dong H 2022 Phys. Rev. E 106 034112
Google Scholar
[114] Tsirlin A M, Kazakov V, Zubov D V 2002 J. Phys. Chem. A 106 10926
Google Scholar
[115] Chen J F, Zhai R X, Sun C P, Dong H 2023 PRX Energy 2 033003
Google Scholar
Catalog
Metrics
- Abstract views: 5193
- PDF Downloads: 264
- Cited By: 0