-
The real-time laser frequency scale system is developed for measuring the carbon isotopic abundance. By using confocal Fabry-Perot interferometer with different free spectral ranges, the diode laser frequency tuning characteristic is acquired in each laser frequency scanning period. During the course of measurements, two nonlinear analysis techniques are tested, i.e., linear interpolation and polynomial fitting. The absorption line center position for CO2 between 4976 and 4980 cm-1 is obtained by 100 average measurements from our experiments. A comparison between the measured absorption spectra and the spectral line positions from the HITRAN-2008 database, shows that the two method can both reach an accuracy of 10-4 cm-1 for the laser frequency scale. The best results are obtained with a linear interpolation method. The result shows that the laser frequency real-time scale system is applicable in carbon isotopic abundances measurement.
-
Keywords:
- real-time laser frequency scale /
- confocal Fabry-Perot interferometer /
- isotopic abundance measurement /
- laser absorption spectroscopy
[1] Thiemens M H 1999 Science 283 341
[2] Pataki D E, Alig R J, Fung A S, Golubiewski N E, Kennedy C A, Mcpherson E G, Nowak D J, Pouyat R V, Lankao P R 2006 Glob. Change Biol. 12 2092
[3] Bowling D R, Baldocci D D, Monson R K 1999 Biogeochem. Cycles 13 903
[4] Graham D Y, Evans D J, Alpert L C, Klein P D, Evans D G, Opekun A R, Boutton T W 1987 Lancet 329 1174
[5] Assonov S, Taylor P, Brenninkmeijer C A M 2009 Rapid Commun. Mass Spectrom 23 1347
[6] Ghosh P, Brand W A, Int J 2003 Mass Spectrom 228 1
[7] Brand W (edited by de Groot P A) 2004 Handbook of Stable Isotope Analytical Techniques (Amsterdam: Elsevier) Chap.38
[8] Mihalcea R M, Baer D S, Hanson R K 1997 Appl. Opt. 36 8745
[9] Dixon G J 1997 Laser Focus World 5 105
[10] Kosterev A A, Curl R F, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 1999 Opt. Lett. 24 1762
[11] Shao J, Gao X M, Deng L H, Huang W, Yang Y, Pei S X, Yuan Y Q, Zhang W J 2004 Chin. Phys. Lett. 21 1908
[12] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军2005 54 1927]
[13] Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867 (in Chinese) [王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 56 3867]
[14] Gong Y L, Zhang R, Wang X D 1994 Opt. Instrum. 18 6
[15] Fan F Y, Song Z Y 2012 Chin. J. Lasers 39 0215002 (in Chinese) [范凤英, 宋增云 2012 中国激光 39 0215002]
-
[1] Thiemens M H 1999 Science 283 341
[2] Pataki D E, Alig R J, Fung A S, Golubiewski N E, Kennedy C A, Mcpherson E G, Nowak D J, Pouyat R V, Lankao P R 2006 Glob. Change Biol. 12 2092
[3] Bowling D R, Baldocci D D, Monson R K 1999 Biogeochem. Cycles 13 903
[4] Graham D Y, Evans D J, Alpert L C, Klein P D, Evans D G, Opekun A R, Boutton T W 1987 Lancet 329 1174
[5] Assonov S, Taylor P, Brenninkmeijer C A M 2009 Rapid Commun. Mass Spectrom 23 1347
[6] Ghosh P, Brand W A, Int J 2003 Mass Spectrom 228 1
[7] Brand W (edited by de Groot P A) 2004 Handbook of Stable Isotope Analytical Techniques (Amsterdam: Elsevier) Chap.38
[8] Mihalcea R M, Baer D S, Hanson R K 1997 Appl. Opt. 36 8745
[9] Dixon G J 1997 Laser Focus World 5 105
[10] Kosterev A A, Curl R F, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 1999 Opt. Lett. 24 1762
[11] Shao J, Gao X M, Deng L H, Huang W, Yang Y, Pei S X, Yuan Y Q, Zhang W J 2004 Chin. Phys. Lett. 21 1908
[12] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军2005 54 1927]
[13] Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867 (in Chinese) [王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 56 3867]
[14] Gong Y L, Zhang R, Wang X D 1994 Opt. Instrum. 18 6
[15] Fan F Y, Song Z Y 2012 Chin. J. Lasers 39 0215002 (in Chinese) [范凤英, 宋增云 2012 中国激光 39 0215002]
Catalog
Metrics
- Abstract views: 6387
- PDF Downloads: 454
- Cited By: 0