Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Iodine electron cyclotron resonance plasma source for electric propulsion

Li Xin Zeng Ming Liu Hui Ning Zhong-Xi Yu Da-Ren

Citation:

Iodine electron cyclotron resonance plasma source for electric propulsion

Li Xin, Zeng Ming, Liu Hui, Ning Zhong-Xi, Yu Da-Ren
PDF
HTML
Get Citation
  • With the rapid development of commercial space in recent years, the low-power and low-cost propulsion systems are needed more and more urgently. Compared with conventional chemical propulsion, electric propulsion has a higher specific impulse. Compared with the conventional xenon propellant, iodine propellant that does not require high pressure storage, is cheap and close to the relative atomic mass and ionization energy of xenon. Electron cyclotron resonance source has the advantages of no internal electrode, low pressure ionization, high plasma density and compact structure, which is suitable for low power electric propulsion. Therefore, the study of low power iodine propellant electron cyclotron resonance plasma source is of great significance. In this study, a set of corrosion-resistant feed system with balanced and stable output of iodine vapor is designed. Then the iodine-corrosion-resistant electron cyclotron resonance thruster is designed completely. A corrosion-resistant coaxial cavity structure is used to feed the microwave to the thruster, and the channel magnetic field is changed into a cusped field to generate more electron cyclotron resonance (ECR) layers. Finally, the combined ignition experiment is successfully conducted, showing the first plasma source using electron cyclotron resonance to ionize iodine propellant that can be used for electric propulsion in the world. The analyses of experiments, static magnetic field, microwave electric field distribution show that the unstable plasma plume scintillation at low power and low flow is caused by the conversion between ordinary wave electron plasmon resonance heating mode and extraordinary wave electron cyclotron resonance heating mode. The decrease of ionization rate at a high flow rate is caused by electron loss, wall loss and electronegativity of iodine propellant. Based on this principle, an improvement scheme is proposed. The plasma source has no obvious damage after discharge, which indicates that it has the potential of long life. This work preliminarily proves that the low power electron cyclotron resonance electric propulsion scheme of low power iodine propellant is feasible.
      Corresponding author: Liu Hui, huiliu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52376023).
    [1]

    Heidt H, Puig-Suari J, Moore A S, Nakasuka S, Twiggs R J 2000 Proceedings of the 14th Annual/USU Conference on Small Satellites Logan, August 21–24, 2000 SSC00-V-5

    [2]

    许亮亮, 蔡明辉, 杨涛, 韩建伟 2020 69 165203Google Scholar

    Xu L L, Cai M H, Yang T, Han J W 2020 Acta Phys. Sin. 69 165203Google Scholar

    [3]

    Poghosyan A, Golkar A 2017 Prog. Aero. Sci. 88 59Google Scholar

    [4]

    Tsay M, Model J, Barcroft C, Frongillo J, Zwahlen J, Feng C 2017 Proceedings of the 35th International Electric Propulsion Conference Atlanta, USA, October 8–12, 2017 IEPC-2017-264

    [5]

    Hillier A, Branam R, Huffman R, Szabo J, Paintal S 2011 Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2011 AIAA-2011-524

    [6]

    Dankanich J W, Calvert D, Kamhawi H, Hickman T, Szabo J, Byrne L 2015 Proceedings of the 34th International Electric Propulsion Conference Kobe-Hyogo, July 4–10, 2015 IEPC-2015-303

    [7]

    Polzin K A, Seixal J F, Mauro S L, Burt A O, Martinez A, Martin A K 2017 Proceedings of the 35th International Electric Propulsion Conference Atlanta, Georgia, October 8–12, 2017 IEPC-2017-11

    [8]

    Szabo J, Robin M, Paintal S, Pote B, Hruby V, Freeman C 2013 Proceedings of the 33th International Electric Propulsion Conference Washington, D. C., October 6–10, 2013 IEPC-2013-311

    [9]

    Tsay M, Frongillo J, Hohman K 2015 Proceedings of the 34th International Electric Propulsion Conference Hyogo-Kobe, July 4–10, 2015 IEPC-2015-273

    [10]

    Rafalskyi D, Martínez J M, Habl L, Rossi E Z, Proynov P, Boré A, Baret T, Poyet A, Lafleur T, Dudin S, Aanesland A 2021 Nature 599 411Google Scholar

    [11]

    Manente M, Trezzolani F, Mantellato R, Scalzi D, Schiavon A, Souhair N, Duzzi M, Barato F, Cappellini L, Barbato A, Paulon D, Selmo A, Bellomo N, Gloder A, Toson E, Minute M, Magarotto M, Pavarin D 2019 Proceedings of the 36th International Electric Propulsion Conference Vienna, September 15–20, 2019 IEPC-2019-417

    [12]

    Manente M, Trezzolani F, Mantellato R, Scalzi D, Schiavon A, Cappellini L, Barato F, Bellomo N, Gloder A, Toson E, Minute M, Vallisari D, Magarotto M, Pavarin D 2019 Proceedings of the 36th International Electric Propulsion Conference Vienna, September 15–20, 2019 IEPC-2019-419

    [13]

    Bellomo N, Magarotto M, Manente M, Trezzolani F, Mantellato R, Cappellini L, Paulon D, Selmo A, Scalzi D, Minute M, Duzzi M, Barbato A, Schiavon A, Fede S D, Souhair N, Carlo P D, Barato F, Milza F, Toson E, Pavarin D 2022 CEAS Space J. 14 79Google Scholar

    [14]

    Szabo1 J, Pote B, Paintal S, Robin M, Hillier A, Branam R D, Huffman R E 2012 J. Propul. Power 28 848Google Scholar

    [15]

    Dankanich J W, Szabo J, Pote B, Oleson S, Kamhawi H 2014 Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, July 28–30, 2014 AIAA-2014-3905

    [16]

    Tsay M, Frongillo J, Hohman K, Malphrus B K 2015 Proceedings of the 29th AIAA/USU Conference on Small Satellites Logan, August 9, 2015 SSC15-XI-1

    [17]

    Yang J H, Jia S X, Zhang Z H, Zhang X H, Jin T, Li L, Cai Y, Cai J 2020 Plasma Sci. Technol. 22 094006Google Scholar

    [18]

    申英杰 2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Shen Y J 2010 M. S. Thesis (Harbin: Harbin Institute of Technology

    [19]

    Shuaibov A K, Grabovaya I A, Gomoki Z T, Kalyuzhnaya A G, Shchedrin A I 2009 Tech. Phys. 54 1819Google Scholar

    [20]

    Matsutani A, Ohtsuki H, Koyama F 2005 Jpn. J. Appl. Phys. 44 L576Google Scholar

    [21]

    Fehsenfeld F C, Evanson K M, Broida H P 1965 Rev. Sci. Instrum. 36 294Google Scholar

    [22]

    Hawley M C, Asmussen J, Filpus J W, Whitehair S, Hoekstra C, Morin T J, Chapman R 1989 J. Propul. Power 5 703Google Scholar

    [23]

    Agnihotri A N, Kelkar A H, Kasthurirangan S, Thulasiram K V, Desai C A, Fernandez W A, Tribedi L C 2011 Phys. Scr. T144 014038Google Scholar

    [24]

    Biri S, Rácz R, Pálinkás J 2012 Rev. Sci. Instrum. 83 02A341Google Scholar

    [25]

    Hargus W A, Lubkeman J S, Remy K E, Gonzales A E 2012 Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Atlanta, Georgia, July 30–August 1, 2012 AIAA-2012-4316

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14Google Scholar

    [27]

    Koizumi H, Kuninaka H 2011 Proceedings of the 32nd International Electric Propulsion Conference Wiesbaden, September 11–15, 2011 IEPC-2011-297

    [28]

    Désangles V, Packan D, Jarrige J, Peterschmitt S, Dietz P, Scharmann S, Holste K, Klar P 2022 Proceedings of the 37th International Electric Propulsion Conference Cambridge, June 19–23, 2022 IEPC-2022-513

    [29]

    Fu S H, Ding Z F 2021 Phys. Plasmas 28 033510Google Scholar

    [30]

    Zeng M, Liu H, Chen Z Q, Huang H Y, Yu D R 2021 Vacuum 192 110486Google Scholar

  • 图 1  微波等离子体源原理图[2528] (a)埃文森微波谐振腔; (b)常压微波等离子体炬; (c) μ1微型离子束源; (d) ECRA推进器

    Figure 1.  Schematic diagram of the microwave plasma source[2528]: (a) Evanson microwave resonant cavity; (b) atmospheric pressure microwave plasma torches; (c) μ1 miniature ion beam source; (d) ECRA thruster.

    图 2  ECR等离子体源实物图(a)及原理图(b)

    Figure 2.  Photo of microwave plasma source (a) and schematic diagram (b).

    图 3  等离子体源磁感应强度分布

    Figure 3.  Magnetic induction intensity distribution of plasma source.

    图 4  ECR层中微波电场垂直分量(E)的分布图. 图中白线表示磁场线, 黄色箭头表示微波电场线

    Figure 4.  Distribution diagram of microwave electric field vertical component (E) in ECR layer. The white lines represent magnetic field lines and the yellow arrows represent microwave electric field lines.

    图 5  碘等离子体源系统示意图

    Figure 5.  Diagram of iodine plasma source system.

    图 6  碘工质贮供系统实物图(a)和流量标定示意图(b)

    Figure 6.  Physical picture of iodine feed system (a) and schematic diagram of flow calibration (b).

    图 7  耐碘腐蚀真空试验平台

    Figure 7.  Iodine corrosion resistance vacuum test platform.

    图 8  探针诊断电路和探针位置示意图, 其中包括法拉第探针和RPA

    Figure 8.  Probe diagnostic circuits and schematic view of the probe positions, including a Faraday probe and RPA.

    图 9  碘罐温度与质量流量关系拟合曲线

    Figure 9.  Iodine tank temperature and mass flow fitting curve.

    图 10  碘工质ECR等离子体源放电图像

    Figure 10.  Image of iodine propellant microwave plasma source discharge.

    图 11  在低流量低功率下, 等离子体源羽流闪烁过程 (a)离子电流密度随时间变化; (b)羽流闪烁过程的图像

    Figure 11.  Plasma source plume scintillation process at low flow and low power: (a) Change of ion current density with time; (b) image of plume scintillation process.

    图 12  离子电流密度分布

    Figure 12.  Ion current density distribution.

    图 13  工质利用率

    Figure 13.  Utilization rate of propellant.

    图 14  不同流量下的离子能量分布

    Figure 14.  Ion energy distribution at different flow rates.

    图 15  不同功率下的离子能量分布

    Figure 15.  Ion energy distribution at different power levels.

    图 16  在微波功率为10 W、质量流量为0.52 mg/s的条件下, 0°—90°内的时间平均离子能量角分布图

    Figure 16.  Contour maps of the time-averaged ion energy angle distribution from 0 to 90° with a 10 W MW power, and 0.52 mg/s mass flow rate.

    Baidu
  • [1]

    Heidt H, Puig-Suari J, Moore A S, Nakasuka S, Twiggs R J 2000 Proceedings of the 14th Annual/USU Conference on Small Satellites Logan, August 21–24, 2000 SSC00-V-5

    [2]

    许亮亮, 蔡明辉, 杨涛, 韩建伟 2020 69 165203Google Scholar

    Xu L L, Cai M H, Yang T, Han J W 2020 Acta Phys. Sin. 69 165203Google Scholar

    [3]

    Poghosyan A, Golkar A 2017 Prog. Aero. Sci. 88 59Google Scholar

    [4]

    Tsay M, Model J, Barcroft C, Frongillo J, Zwahlen J, Feng C 2017 Proceedings of the 35th International Electric Propulsion Conference Atlanta, USA, October 8–12, 2017 IEPC-2017-264

    [5]

    Hillier A, Branam R, Huffman R, Szabo J, Paintal S 2011 Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2011 AIAA-2011-524

    [6]

    Dankanich J W, Calvert D, Kamhawi H, Hickman T, Szabo J, Byrne L 2015 Proceedings of the 34th International Electric Propulsion Conference Kobe-Hyogo, July 4–10, 2015 IEPC-2015-303

    [7]

    Polzin K A, Seixal J F, Mauro S L, Burt A O, Martinez A, Martin A K 2017 Proceedings of the 35th International Electric Propulsion Conference Atlanta, Georgia, October 8–12, 2017 IEPC-2017-11

    [8]

    Szabo J, Robin M, Paintal S, Pote B, Hruby V, Freeman C 2013 Proceedings of the 33th International Electric Propulsion Conference Washington, D. C., October 6–10, 2013 IEPC-2013-311

    [9]

    Tsay M, Frongillo J, Hohman K 2015 Proceedings of the 34th International Electric Propulsion Conference Hyogo-Kobe, July 4–10, 2015 IEPC-2015-273

    [10]

    Rafalskyi D, Martínez J M, Habl L, Rossi E Z, Proynov P, Boré A, Baret T, Poyet A, Lafleur T, Dudin S, Aanesland A 2021 Nature 599 411Google Scholar

    [11]

    Manente M, Trezzolani F, Mantellato R, Scalzi D, Schiavon A, Souhair N, Duzzi M, Barato F, Cappellini L, Barbato A, Paulon D, Selmo A, Bellomo N, Gloder A, Toson E, Minute M, Magarotto M, Pavarin D 2019 Proceedings of the 36th International Electric Propulsion Conference Vienna, September 15–20, 2019 IEPC-2019-417

    [12]

    Manente M, Trezzolani F, Mantellato R, Scalzi D, Schiavon A, Cappellini L, Barato F, Bellomo N, Gloder A, Toson E, Minute M, Vallisari D, Magarotto M, Pavarin D 2019 Proceedings of the 36th International Electric Propulsion Conference Vienna, September 15–20, 2019 IEPC-2019-419

    [13]

    Bellomo N, Magarotto M, Manente M, Trezzolani F, Mantellato R, Cappellini L, Paulon D, Selmo A, Scalzi D, Minute M, Duzzi M, Barbato A, Schiavon A, Fede S D, Souhair N, Carlo P D, Barato F, Milza F, Toson E, Pavarin D 2022 CEAS Space J. 14 79Google Scholar

    [14]

    Szabo1 J, Pote B, Paintal S, Robin M, Hillier A, Branam R D, Huffman R E 2012 J. Propul. Power 28 848Google Scholar

    [15]

    Dankanich J W, Szabo J, Pote B, Oleson S, Kamhawi H 2014 Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, July 28–30, 2014 AIAA-2014-3905

    [16]

    Tsay M, Frongillo J, Hohman K, Malphrus B K 2015 Proceedings of the 29th AIAA/USU Conference on Small Satellites Logan, August 9, 2015 SSC15-XI-1

    [17]

    Yang J H, Jia S X, Zhang Z H, Zhang X H, Jin T, Li L, Cai Y, Cai J 2020 Plasma Sci. Technol. 22 094006Google Scholar

    [18]

    申英杰 2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Shen Y J 2010 M. S. Thesis (Harbin: Harbin Institute of Technology

    [19]

    Shuaibov A K, Grabovaya I A, Gomoki Z T, Kalyuzhnaya A G, Shchedrin A I 2009 Tech. Phys. 54 1819Google Scholar

    [20]

    Matsutani A, Ohtsuki H, Koyama F 2005 Jpn. J. Appl. Phys. 44 L576Google Scholar

    [21]

    Fehsenfeld F C, Evanson K M, Broida H P 1965 Rev. Sci. Instrum. 36 294Google Scholar

    [22]

    Hawley M C, Asmussen J, Filpus J W, Whitehair S, Hoekstra C, Morin T J, Chapman R 1989 J. Propul. Power 5 703Google Scholar

    [23]

    Agnihotri A N, Kelkar A H, Kasthurirangan S, Thulasiram K V, Desai C A, Fernandez W A, Tribedi L C 2011 Phys. Scr. T144 014038Google Scholar

    [24]

    Biri S, Rácz R, Pálinkás J 2012 Rev. Sci. Instrum. 83 02A341Google Scholar

    [25]

    Hargus W A, Lubkeman J S, Remy K E, Gonzales A E 2012 Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Atlanta, Georgia, July 30–August 1, 2012 AIAA-2012-4316

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14Google Scholar

    [27]

    Koizumi H, Kuninaka H 2011 Proceedings of the 32nd International Electric Propulsion Conference Wiesbaden, September 11–15, 2011 IEPC-2011-297

    [28]

    Désangles V, Packan D, Jarrige J, Peterschmitt S, Dietz P, Scharmann S, Holste K, Klar P 2022 Proceedings of the 37th International Electric Propulsion Conference Cambridge, June 19–23, 2022 IEPC-2022-513

    [29]

    Fu S H, Ding Z F 2021 Phys. Plasmas 28 033510Google Scholar

    [30]

    Zeng M, Liu H, Chen Z Q, Huang H Y, Yu D R 2021 Vacuum 192 110486Google Scholar

  • [1] Luo Ling-Feng, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Numerical simulation of magnetic field influence on plasma and electron extraction of electron cyclotron resonance neutralizer. Acta Physica Sinica, 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [2] Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er. Global model of miniature electron cyclotron resonance ion source. Acta Physica Sinica, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [3] Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma. Acta Physica Sinica, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [4] Xia Xu, Yang Juan, Fu Yu-Liang, Wu Xian-Ming, Geng Hai, Hu Zhan. Numerical simulation of influence of magnetic field on plasma characteristics and surface current of ion source of 2-cm electron cyclotron resonance ion thruster. Acta Physica Sinica, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [5] Liu Hui, Jiang Wen-Jia, Ning Zhong-Xi, Cui Kai, Zeng Ming, Cao Xi-Feng, Yu Da-Ren. Cusped field thruster using different propellants. Acta Physica Sinica, 2018, 67(14): 145201. doi: 10.7498/aps.67.20180366
    [6] Luo Le-Le, Dou Zhi-Guo, Ye Ji-Fei. Optimization exploration of laser ablation propulsion performance of infrared dye doped glycidyl azide polymer. Acta Physica Sinica, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [7] Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong. A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters. Acta Physica Sinica, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [8] Zhang Yu-Ping, Liu Ling-Yu, Chen Qi, Feng Zhi-Hong, Wang Jun-Long, Zhang Xiao, Zhang Hong-Yan, Zhang Hui-Yun. Effect of cooling of electron-hole plasma in electrically pumped graphene layer structures with split gates. Acta Physica Sinica, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [9] Duan Ping, Cao An-Ning, Shen Hong-Juan, Zhou Xin-Wei, Qin Hai-Juan, Liu Jin-Yuan, Qing Shao-Wei. Effect of electron temperature on the characteristics of plasma sheath in Hall thruster. Acta Physica Sinica, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [10] Gao Bi-Rong, Liu Yue. Numerical study on uniformity of electron cyclotron resonance plasma density. Acta Physica Sinica, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [11] Ke Bo, Wang Lei, Ni Tian-Ling, Ding Fang, Chen Mu-Di, Zhou Hai-Yang, Wen Xiao-Hui, Zhu Xiao-Dong. Effects of radio-frequency bias on silicon oxide films deposited by dual electron cyclotron resonance-radio frequency hybrid plasma. Acta Physica Sinica, 2010, 59(2): 1338-1343. doi: 10.7498/aps.59.1338
    [12] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [13] Chen Zhuo, He Wei, Pu Yi-Kang. Measurement of metastable state densities and electron temperatures in an electron cyclotron resonance argon plasma. Acta Physica Sinica, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [14] Ye Chao, Du Wei, Ning Zhao-Yuan, Cheng Shan-Hua. Effect of grid and bias on the characteristic of CHF3 electron cyclot ron resonance discharge plasma. Acta Physica Sinica, 2003, 52(7): 1802-1807. doi: 10.7498/aps.52.1802
    [15] NING ZHAO-YUAN, CHENG SHAN-HUA, YE CHAO. CHEMICAL BONDING STRUCTURE OF FLUORINATED AMORPHOUS CARBON FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [16] YE CHAO, NING ZHAO-YUAN, CHENG SHAN-HUA. OPTICAL PROPERTIES OF AMORPHOUS FLUORINATED CARBON FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA. Acta Physica Sinica, 2001, 50(10): 2017-2022. doi: 10.7498/aps.50.2017
    [17] Liu Ming-Hai, Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang. . Acta Physica Sinica, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [18] DU XIAO-LONG, CHEN GUANG-CHAO, JIANG DE-YI, YAO XIN-ZI, ZHU HE-SUN. PROPERTIES OF ELECTRON CYCLOTRON RESONANCE PLASMAS AND THEIR INFLUENCE ON THE DEPOSITION OF GaN FILMS. Acta Physica Sinica, 1999, 48(2): 257-266. doi: 10.7498/aps.48.257
    [19] GONG YE, WEN XIAO-JUN, ZHANG PENG-YUN, DENG XIN-LU. NUMERICAL STUDY OF ION TRANSPORT IN ECR MICROWAVE PLASMA WITH A CYLINDER MODEL. Acta Physica Sinica, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [20] LIU PU-KUN, XIONG CAI-DONG, LIU SHENG-GANG, TANG CHANG-JIAN, QIAN SHANG-JIE. A NEW PLASMA MASER SCHEME——THE ION-CHANNEL ELECTRON CYCLOTRON MASER. Acta Physica Sinica, 1997, 46(5): 892-896. doi: 10.7498/aps.46.892
Metrics
  • Abstract views:  2456
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2023
  • Accepted Date:  15 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 November 2023

/

返回文章
返回
Baidu
map