Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of magnetic field influence on plasma and electron extraction of electron cyclotron resonance neutralizer

Luo Ling-Feng Yang Juan Geng Hai Wu Xian-Ming Mou Hao

Citation:

Numerical simulation of magnetic field influence on plasma and electron extraction of electron cyclotron resonance neutralizer

Luo Ling-Feng, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Electron cyclotron resonance (ECR) neutralizer is a key component of electron cyclotron resonance ion thruster (ECRIT) with a diameter of 10 cm, which plays an important role in maintaining the spacecraft potential balance and neutralizing the ions in the plume region. Optimizing magnetic field distribution is an important way to improve the performance of neutralizer. At the same time, the uniformity of the magnetic field and the position of the magnetic trap can affect the magnetic field characteristics, plasma performance, electron extraction process, and beam current. Previous experimental researches showed that the beam current extraction performances of the two ECR neutralizers with different magnetic field uniformity and different magnetic trap locations are significantly different. However, it is difficult to reveal the physical phenomena and causes only through experiments, so numerical simulation is needed. Therefore PIC/MCC codes for the ECR neutralizers with different uniformity of magnetic field and different positions of magnetic trap are established. Under the given electron extraction potential, numerical simulations are accomplished to study electron extraction procedure and analyze its influence on the performance of the neutralizer. The simulation results show that when the magnetic field uniformity is low and the magnetic trap is located upstream of extraction orifice, the migration of electrons from the magnetic trap to the outlet is limited by the magnetic field and the electric field, thus a higher potential energy is needed to extract the electrons. Otherwise, when the magnetic field uniformity is high and the magnetic trap is located at the downstream of extraction orifice, electrons will be more likely to migrate towards the magnet trap. After the electrons reach the magnetic trap, under the action of the anode potential, the external potential is higher, and the external weak magnetic field almost fails to hold these electrons. Therefore a large number of electrons can be extracted at low extraction potential. This research will lay an important foundation for the development of high-performance ECR neutralizer.
      Corresponding author: Yang Juan, yangjuan@nwpu.edu.cn
    [1]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78Google Scholar

    Yang J, Mou H, Gen H, Wu X M 2023 J. Propuls. Tech. 44 78Google Scholar

    [2]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power 34 960Google Scholar

    [3]

    谈人玮, 杨涓, 耿海, 吴先明, 牟浩 2023 72 045202Google Scholar

    Tan R W, Yang J, Gen H, Wu X M, Mou H 2023 Acta Phys. Sin. 72 045202Google Scholar

    [4]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 T. Jpn. Soc. Aeronaut. S. 7 163Google Scholar

    [5]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544Google Scholar

    [6]

    Tsuda Y, Nakazawa S, Yoshikawa M, Saiki T, Terui F, Arakawa M, Abe M, Kitazato K, Sugita S, Tachibana S, Namiki N, Tanaka S, Okada T, Ikeda H, Watanabe S i, Hirabayashi M, Tsuda Y 2022 Hayabusa2 Asteroid Sample Return Mission (Elsevier) pp5–23

    [7]

    Kawaguchi J i, Fujiwara A, Uesugi T 2008 Acta Astronaut. 62 639Google Scholar

    [8]

    Mou H, Jin Y Z, Yang J, Xia X, Fu Y L 2022 Chin. Phys. B 31 075202Google Scholar

    [9]

    Zheng P, Wu J, Zhang Y, Che B, Li J 2021 Acta Astronaut. 187 236Google Scholar

    [10]

    罗立涛, 杨涓, 金逸舟, 孙俊, 韩飞 2016 中国空间科学技术 36 35Google Scholar

    Luo L T, Yang J, Jin Y Z, Sun J, Han F 2016 Chin. Space Sci. Tech. 36 35Google Scholar

    [11]

    罗立涛, 杨涓, 金逸舟, 冯冰冰, 汤明杰 2015 西北工业大学学报 33 395Google Scholar

    Luo L T, Yang J, Jin Y Z, Feng B B, Tang J M 2015 J. Northwest. Polytech. Univ. 33 395Google Scholar

    [12]

    孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478Google Scholar

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 40 1478Google Scholar

    [13]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 T. Jpn. Soc. Aeronaut. S. 49 87Google Scholar

    [14]

    Fu Y L, Yang J, Geng H, Wu X, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [15]

    高振业 2022 硕士学位论文(西安: 西北工业大学)

    Gao Z Y 2022 M. S. Thesis (Xi’an: Northwestern Polytechnical University

    [16]

    Nishiyama K, Kuninaka H 2008 Surf. Coat. Tech. 202 5262Google Scholar

    [17]

    Fu Y L, Yang J, Jin Y, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar

    [18]

    付瑜亮 2022 博士学位论文 (西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertationn (Xi’an: Northwestern Polytechnical University

    [19]

    杨涓, 石峰, 杨铁链, 孟志强 2010 59 8701Google Scholar

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701Google Scholar

    [20]

    金逸舟 2018 博士学位论文(西安: 西北工业大学)

    Jin Y Z 2018 Ph. D. Dissertationn (Xi’an: Northwestern Polytechnical University

    [21]

    Ikkoh Funaki I F, Hitoshi Kuninaka H K 2001 Japanese Journal of Applied Physics 40 2495Google Scholar

    [22]

    夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 71 045201Google Scholar

    Xia X, Yang J, Gen H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin. 71 045201Google Scholar

    [23]

    Chen F F 1974 Introduction to Plasma Physics (New York: Springer Science Business Media) pp139–180

  • 图 1  国内外ECR中和器束流引出实验伏安特性曲线

    Figure 1.  Characteristic curve of current beam extracted from ECR neutralizer.

    图 2  ECR中和器结构 (a) 磁阱内置; (b) 磁阱外置

    Figure 2.  ECR neutralizer structures: (a) Internal magnetic trap; (b) external magnetic trap.

    图 3  ECR中和器电子束流引出实验系统

    Figure 3.  ECR neutralizer electron beam extraction experiment system.

    图 4  数值模拟计算域和边界条件 (a) 磁阱内置; (b) 磁阱外置

    Figure 4.  Numerical simulation calculation domain and boundary: (a) Internal magnetic trap; (b) external magnetic trap.

    图 5  数值模拟流程

    Figure 5.  Numerical simulation procedure.

    图 6  不同阳极电势中和器电子密度分布 (a) 磁阱内置φa = 20 V; (b) 磁阱外置φa = 20 V; (c) 磁阱内置φa = 50 V; (d) 磁阱外置φa = 40 V

    Figure 6.  Electron density distribution inside of neutralizer at different anode potential: (a) Internal magnetic trap at φa = 20 V; (b) external magnetic trap at φa = 20 V; (c) internal magnetic trap at φa = 50 V; (d) external magnetic trap at φa = 40 V.

    图 7  不同阳极电势中和器离子密度分布 (a) 磁阱内置φa = 20 V; (b) 磁阱外置φa = 20 V; (c) 磁阱内置φa = 50 V; (d) 磁阱外置φa=40 V

    Figure 7.  Ion density distribution inside of neutralizer at different anode potential: (a) Internal magnetic trap at φa = 20 V; (b) external magnetic trap at φa = 20 V; (c) internal magnetic trap at φa = 50 V; (d) external magnetic trap at φa = 40 V.

    图 8  ECR中和器磁场分布 (a) 磁阱内置; (b) 磁阱外置

    Figure 8.  ECR neutralizer magnetic field distribution: (a) Internal magnetic trap; (b) external magnetic trap.

    图 9  不同阳极板电势下中和器电势分布 (a) 磁阱内置φa = 20 V; (b) 磁阱外置φa = 20 V; (c) 磁阱内置φa = 50 V; (d) 磁阱外置φa = 40 V

    Figure 9.  Potential distribution inside of neutralizer at different anode potential: (a) Internal magnetic trap at φa = 20 V; (b) external magnetic trap at φa = 20 V; (c) internal magnetic trap at φa = 50 V; (d) external magnetic trap at φa = 40 V.

    图 10  两类ECR中和器束流引出实验和模拟统计结果

    Figure 10.  Experiment and calculation results of electron current from different neutralizer.

    图 11  不同阳极电势下电子引出路径电势分布 (a) 磁阱内置; (b) 磁阱外置

    Figure 11.  Potential distribution on electron extraction path at different anode potential: (a) Internal magnetic trap; (b) external magnetic trap.

    Baidu
  • [1]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78Google Scholar

    Yang J, Mou H, Gen H, Wu X M 2023 J. Propuls. Tech. 44 78Google Scholar

    [2]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power 34 960Google Scholar

    [3]

    谈人玮, 杨涓, 耿海, 吴先明, 牟浩 2023 72 045202Google Scholar

    Tan R W, Yang J, Gen H, Wu X M, Mou H 2023 Acta Phys. Sin. 72 045202Google Scholar

    [4]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 T. Jpn. Soc. Aeronaut. S. 7 163Google Scholar

    [5]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544Google Scholar

    [6]

    Tsuda Y, Nakazawa S, Yoshikawa M, Saiki T, Terui F, Arakawa M, Abe M, Kitazato K, Sugita S, Tachibana S, Namiki N, Tanaka S, Okada T, Ikeda H, Watanabe S i, Hirabayashi M, Tsuda Y 2022 Hayabusa2 Asteroid Sample Return Mission (Elsevier) pp5–23

    [7]

    Kawaguchi J i, Fujiwara A, Uesugi T 2008 Acta Astronaut. 62 639Google Scholar

    [8]

    Mou H, Jin Y Z, Yang J, Xia X, Fu Y L 2022 Chin. Phys. B 31 075202Google Scholar

    [9]

    Zheng P, Wu J, Zhang Y, Che B, Li J 2021 Acta Astronaut. 187 236Google Scholar

    [10]

    罗立涛, 杨涓, 金逸舟, 孙俊, 韩飞 2016 中国空间科学技术 36 35Google Scholar

    Luo L T, Yang J, Jin Y Z, Sun J, Han F 2016 Chin. Space Sci. Tech. 36 35Google Scholar

    [11]

    罗立涛, 杨涓, 金逸舟, 冯冰冰, 汤明杰 2015 西北工业大学学报 33 395Google Scholar

    Luo L T, Yang J, Jin Y Z, Feng B B, Tang J M 2015 J. Northwest. Polytech. Univ. 33 395Google Scholar

    [12]

    孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478Google Scholar

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 40 1478Google Scholar

    [13]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 T. Jpn. Soc. Aeronaut. S. 49 87Google Scholar

    [14]

    Fu Y L, Yang J, Geng H, Wu X, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [15]

    高振业 2022 硕士学位论文(西安: 西北工业大学)

    Gao Z Y 2022 M. S. Thesis (Xi’an: Northwestern Polytechnical University

    [16]

    Nishiyama K, Kuninaka H 2008 Surf. Coat. Tech. 202 5262Google Scholar

    [17]

    Fu Y L, Yang J, Jin Y, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar

    [18]

    付瑜亮 2022 博士学位论文 (西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertationn (Xi’an: Northwestern Polytechnical University

    [19]

    杨涓, 石峰, 杨铁链, 孟志强 2010 59 8701Google Scholar

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701Google Scholar

    [20]

    金逸舟 2018 博士学位论文(西安: 西北工业大学)

    Jin Y Z 2018 Ph. D. Dissertationn (Xi’an: Northwestern Polytechnical University

    [21]

    Ikkoh Funaki I F, Hitoshi Kuninaka H K 2001 Japanese Journal of Applied Physics 40 2495Google Scholar

    [22]

    夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 71 045201Google Scholar

    Xia X, Yang J, Gen H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin. 71 045201Google Scholar

    [23]

    Chen F F 1974 Introduction to Plasma Physics (New York: Springer Science Business Media) pp139–180

Metrics
  • Abstract views:  1892
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2024
  • Accepted Date:  26 June 2024
  • Available Online:  16 July 2024
  • Published Online:  20 August 2024

/

返回文章
返回
Baidu
map