Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative study on isotope effect of rubidium clusters

Di Shu-Hong Zhang Yang Yang Hui-Jing Cui Nai-Zhong Li Yan-Kun Liu Hui-Yuan Li Ling-Li Shi Feng-Liang Jia Yu-Xuan

Citation:

Quantitative study on isotope effect of rubidium clusters

Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan
PDF
HTML
Get Citation
  • Because of the difficulty in measuring the cluster isotope displacement and identifying its cause, the resonance dissociation spectra, the moment shift and Zeeman energy shift of isotope cluster 87,85Rbn (n = 1, 2, 3, ··· , 13) are obtained by the combination of optical magnetic resonance and thermal dissociation techniques in this study. The quantitative calculation is carried out based on the conceptual model of the giant atom, and the results are in excellent agreement with the measured results, which shows that rubidium clusters can be analyzed as giant atoms. Furthermore, 5s electron shell level structures of the rubidium cluster 87,85Rbn (n = 1, 2, 3, ··· , 92) are calculated by using Zeeman level interval model. It is found that the main order and step distance of the 5s electron shell structure are similar to those of 3s single electron shell structure of sodium cluster in spherical symmetry. It is confirmed that the structure of the 5s electron shell of the rubidium cluster is determined by the largest energy gap in total Zeeman levels and the characteristic peaks of odd and even alternating and anomalous magnetic moments of special numbers such as n = 2 are caused by the intrinsic properties of electrons and molecular structures. It is also found that 87Rbn level shell structure and 85Rbn level shell structure strictly conform to the ratio of 3/2 magnitude relationship, and that there are abnormal differences in spectral center frequency and broadening, which may be directly related to the 85,87Rb nuclei close to the shell closure.
      Corresponding author: Di Shu-Hong, zhudizhe@163.com ; Zhang Yang, 185540891@qq.com ; Yang Hui-Jing, yanghj619@126.com
    [1]

    Makarov V I, Kochubei S A, Khmelinskii I V 2003 Chem. Phys. Lett. 376 230Google Scholar

    [2]

    DE Bievre P J, Debus G H 1965 Nucl. Instrum. Meth. 32 224Google Scholar

    [3]

    Bokhan P A, Buchanov V V, Zakrevskii D E, Kazaryan M A, Kalugin M M, Fateev N V 2003 J. Russ. Laser Res. 24 159

    [4]

    Macadam K B, Steibach A, Wieman C 1992 Am. J. Phys. 60 1098Google Scholar

    [5]

    Patrick H, Wieman C E 1991 Rev. Sci. Instrum. 62 2593Google Scholar

    [6]

    Lapitajs G, Hendrickx 1 F, Verbruggen A, Lamberty A 1996 Int. J. Mass. Spectyom. Ion. Proc. 152 69Google Scholar

    [7]

    Minster J F, Allegre C J 1976 Earth. Planet. Sc. Lett. 32 191Google Scholar

    [8]

    De Bievre P 1990 Fresen. J. Anal. Chem. 337 766Google Scholar

    [9]

    Waight T, Baker J, Willigers B 2002 Chem. Geol. 186 99Google Scholar

    [10]

    Nebel O, Mezger K, Scherer E E, Munker C 2005 Int. J. Mass. Spectrom. 246 10Google Scholar

    [11]

    Knight W D, Clemenger K, Walt A, Heer D, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141Google Scholar

    [12]

    Saito S, Ohnishi S 1987 Physics and Chemistry of Small Clusters (New York: New York and London Published in Cooperation with NATO Scientific Affairs Division Plenum Press) p115

    [13]

    Nozue Y, Kodaira T, Ohwashi S, Togashi N, Terasaki O 1996 Surf. Rev. Lett. 3 701Google Scholar

    [14]

    Igarashi M, Kodaira T, Ikeda T, Itoh M, Shimizu T, Goto A , Nozue Y 2003 Physics B 327 72

    [15]

    邸淑红, 张阳, 杨会静, 伞星原, 刘会媛, 张素恒, 李繁麟, 太军君, 周春丽 2021 70 122101Google Scholar

    Di S H, Zhang Y, Yang H J, San X Y, Liu H Y, Zhang S H, Li F L, Tai J J, Zhou C L 2021 Acta Phys. Sin. 70 122101Google Scholar

    [16]

    吴思成, 王祖铨1999近代物理实验 (北京: 北京大学出版社) 第348—358页

    Wu S C, Wang Z Q 1999 Modern Physics Experiment (Beijing: BeijingUniversity Press) pp348–358

    [17]

    格哈德 H (王鼎昌 译) 1983 分子光谱与分子结构(第1卷) (北京: 科学出版社) 第1—272页

    Gerhard H (translated by Wang D C)1983 Molecules Spectroscopy and Molecules Structures (Vol. 1) (Beijing: Science Press) pp1–272

    [18]

    周公度, 叶宪曾2012化学元素综论 (北京: 科学出版社) 第366页

    Zhou G D, Ye X Z 2012 Chemical Elements Survey (Beijing: Science Press) p366

    [19]

    Jahn H A, Teller E 1937 Proc. Roy. Soc. A 161 220

    [20]

    Jahn H A 1938 Proc. Roy. Soc. A 164 117

    [21]

    Kubo R 1962 J. Phys. Soc. Jpn. 17 975Google Scholar

    [22]

    关洪 2000 量子力学基础 (北京: 高等教育出版社) 第168—174页

    Guan H 2000 Basic Quantum Mechanics (Beijing: Higher Education Press) pp168–174

    [23]

    Ekstrom C, Ingelman S, Wannberg G, Skarestad M, 1978 Nucl. Phys. A 311 269Google Scholar

  • 图 1  (a), (b)实验测得的87Rbn, 85Rbn的8种簇粒子的共振频率$ \bar f $与磁场H0的关系曲线(1 G = 10–4 T)

    Figure 1.  (a), (b) Relationship between the resonant frequency $ \bar f $ of 8 kinds of 87Rbn, 85Rbn cluster particles and the magnetic field H0

    图 2  (a), (b) 两系列同位素原子簇的87Rbn, 85Rbn (n = 1, 2, ···, 13)的共振离解光谱

    Figure 2.  (a), (b) Resonance dissociation spectra of two series of isotopic atomic clusters 87Rbn, 85Rbn (n = 1, 2, ···, 13).

    图 3  等数簇矩移随n变化的模型值与实验值比较图(实验值用虚线, 模型值用实线)

    Figure 3.  Comparison of calculated values and experimental values of magnetic moment shift of equal number cluster with n (dashed lines for experimental value, full lines for model value).

    图 4  等数簇超精细结构塞曼能移随n变化的模型值与实验值比较图(实验值用虚线, 模型值用实线)

    Figure 4.  Comparison of calculated values and experimental values of Zeeman energy shift of equal-number hyperfine structures with n (dashed lines for experimental value, full lines for model value).

    图 5  (a) 87Rbn 5s电子壳层能级结构; (b) 85Rbn 5s电子壳层能级结构

    Figure 5.   (a) 5s electron shell level structure of 87Rbn; (b) 5s electron shell level structure of 85Rbn.

    图 6  (a), (b) 87Rbn, 85Rbn同位素原子簇的相对频移图

    Figure 6.  (a), (b) Diagrams of relative frequency shift of equal-number cluster 87Rbn, 85Rbn.

    表 1  实验测量的87Rbn, 85Rbn等数簇平均矩移和塞曼能移及光谱振幅

    Table 1.  Measured mean magnetic moment shifts, Zeeman energy shifts and spectrum amplitudes of 87Rbn, 85Rbn.

    87,85Rbn 5s
    电子数
    磁矩及矩移/μB 塞曼能移
    $ \Delta {\bar E_n}/{\mu _{\text{B}}}{H_0} $
    磁矩比
    $ {\bar \mu _{{87}n}}/{\bar \mu _{{85}n}} $
    塞曼能比
    $ {\bar E_{87 n}}/{\bar E_{85 n}} $
    光谱平均幅度/mV
    $ {\bar \mu _{87 n}} $ $ {\bar \mu _{85 n}} $ $ \Delta {\bar \mu _n} $ ${{{{\bar A}_{87n}}}} $ ${{{{\bar A}_{85n}}}} $ ${{{{\bar A}_{87n}}}}/ {{{{\bar A}_{85n}}}} $
    87,85Rb1 1 0.494337 0.330120 0.164217 0.164217 1.497446 1.497446 1574.50 1008.71 1.56∶1
    87,85Rb2 2 0.246984 0.164773 0.082211 0.082211 1.498935 1.498935 105.75 70.60 1.50∶1
    87,85Rb3 3 0.164598 0.109974 0.054624 0.054624 1.496699 1.496699 883.07 589.49 1.49∶1
    87,85Rb4 4 0 0 0 0 0 0 无共振
    87,85Rb5 5 0.098789 0.066044 0.032745 0.032745 1.495805 1.495805 383.47 354.10 1.08∶1
    87,85Rb6 6 0 0 0 0 0 0 无共振
    87,85Rb7 7 0.070635 0.047180 0.023455 0.023455 1.497139 1.497139 188.70 170.63 1.10∶1
    87,85Rb8 8 0 0 0 0 0 0 无共振
    87,85Rb9 9 0.054953 0.036718 0.018235 0.018235 1.496623 1.496623 84.92 79.59 1.06∶1
    87,85Rb10 10 0 0 0 0 0 0 无共振
    87,85Rb11 11 0.044975 0.030046 0.014929 0.014929 1.496871 1.496871 48.62 39.90 1.18∶1
    87,85Rb12 12 0 0 0 0 0 0 无共振
    87,85Rb13
    13 0.038060 0.025423 0.012637 0.012637 1.497070 1.497070 31.55 23.07 1.34∶1
    DownLoad: CSV

    表 2  87Rbn, 85Rbn双原子分子基态X和最低激发态A的电子组态和分子态项型表

    Table 2.  Electronic configuration and molecular state item type of 8 pairs of diatomic molecule 87Rbn , 85Rbn ground and lowest excited states.

    团簇分子,
    参考分子
    X组态和分子态及其$ {\lambda }_{合} $和s A组态和分子态及其$ {\lambda }_{合} $和s X与A 稳定性比较$ {p_{\text{a}}} - {p_{\text{b}}}$

    87,85Rb1
    $ \begin{array}{c}{\text{KLMNspd(σ}}_{\text{g}}\text{5s}), \\ {}^{2}\text{Σ}{}_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c} \text{KLMNspd}({\text{π}}_{\text{u}}4\text{d}), \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2; \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 \end{array} $
    87,85Rb2[17] $ \begin{array}{c}({\text{σ}}_{\text{g}}\text{5s})^{2}, {}^{1}\Sigma {}_{\text{g}}^{+}, {\lambda }_{合}=0, s=\text{0;}\\({\text{σ}}_{\text{g}}\text{5s)}{\text{(σ}}_{\text{u}}\text{5s)}, {}^{3}\Sigma {}_{\rm u}^{+}, \\{\lambda }_{合}=0, s=1\end{array} $ $ \begin{array}{c}{\text{(σ}}_{\text{g}}{\text{5s)(π}}_{\text{u}}\text{4d)}, {}^{1}\Pi_{\text{u}}, {\lambda }_{合}=1, s=0;\\或\; ({\text{σ}}_{\text{u}}{\text{5s)(π}}_{\text{u}}\text{4d)}, {}^{3}\Pi_{\text{g}},\\ {\lambda }_{合}=1, s=1\end{array} $ $ \begin{array}{l} {}\quad\;{\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 0 = 1; \\ {}\quad\;{\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 0 = 1 \\ 或\; {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 - 1/2 = 0; \\ {}\quad\;{\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 - 1/2 = 0\, \end{array} $
    87,85Rb3 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{\text{(σ}}_{\text{u}}\text{5s)}, \\ {}^{2}\Sigma_{\text{u}}^{+}, {\lambda}_{合}=0, s=1/2\end{array} $ $ \begin{array}{c}{\text{(σ}}_{\text{g}}\text{5s)}{\text{(σ}}_{\text{u}}\text{5s)}{\text{(π}}_{\text{u}}\text{4d), }\\ {}^{2}\Pi_{\text{g}}^{}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 1/2 = 1/2 \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 1/2 = 1/2 \end{array} $
    87,85Rb5 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{\text{(σ}}_{\text{g}}\text{4d), }\\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{\text{(π}}_{\text{u}}\text{4d)}, \\ {}^{2}\Pi_{\text{u}}^{}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1\dfrac{1}{2} - 1 = 1/2 \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1\dfrac{1}{2} - 1 = 1/2 \end{array} $

    87,85Rb7
    $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{\text{(π}}_{\text{u}}\text{4d)}, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^1{{\text{(π}}_{\text{u}}}{\text{4d)}}^2, \\{}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 2\dfrac{1}{2} - 1 = 1\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 2\dfrac{1}{2} - 1 = 1\dfrac{1}{2} \end{array} $

    87,85Rb9
    $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^3, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^1{{\text{(π}}_{\text{u}}}{\text{4d)}}^4, \\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 3\dfrac{1}{2} - 1 = 2\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 3\dfrac{1}{2} - 1 = 2\dfrac{1}{2} \end{array} $
    87,85Rb11 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^1, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^1{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^2, \\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 1\dfrac{1}{2} = 2\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 1\dfrac{1}{2} = 2\dfrac{1}{2} \end{array} $
    87,85Rb13 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^3, \\ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^1{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^4, \\ {}^{2}\Sigma_{\text{u}}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 2\dfrac{1}{2} = 1\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 2\dfrac{1}{2} = 1\dfrac{1}{2} \end{array} $
    注: 表2中电子组态仅87,85Rb1的基态和激发态标出了闭壳层KLMNspd, 其他粒子没有重复标出闭壳层KLMNspd.
    DownLoad: CSV

    表 3  原子簇87Rbn磁矩和塞曼能级间隔模型与实验结果比较

    Table 3.  Comparison of experiment values and calculated values of magnetic moment and Zeeman energy level interval of 87Rbn atomic cluster.

    87Rbn 5s
    电子数
    分子态及本
    征值$ {\lambda }_{合} $和s
    模型
    F
    $ {\bar \mu _n}/{\mu _{\text{B}}} $ $ {\bar \mu _n} $相对
    误差/‰
    $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $ $ {\bar E_n} $相对
    误差/‰
    模型 实验 模型 实验
    87Rb1 1 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 2 $ 1/2 $ 0.494337 –11.326 $ 1/2 $ 0.494337 –11.326
    87Rb2 2 $ {}^{3}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1 $ 4 $ 1/4 $ 0.246984 –12.064 $ 1/4 $ 0.246984 –12.064
    87Rb3 3 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 6 $ 1/6 $ 0.164598 –12.412 $ 1/6 $ 0.164598 –12.412
    87Rb5 5 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 10 $ 1/10 $ 0.098789 –12.110 $ 1/10 $ 0.098789 –12.110
    87Rb7 7 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 14 $ 1/14 $ 0.070635 –11.110 $ 1/14 $ 0.070635 –11.110
    87Rb9 9 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 18 $ 1/18 $ 0.054953 –10.846 $ 1/18 $ 0.054953 –10.846
    87Rb11 11 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 22 $ 1/22 $ 0.044975 –10.550 $ 1/22 $ 0.044975 –10.550
    87Rb13 13 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 26 $ 1/26 $ 0.038060 –10.440 $ 1/26 $ 0.038060 –10.440
    87Rb4,6,8,10,12 4, 6, 8, 10, 12 [19, 20, 21] 0 0 0 0 0 0
    平均值 –6.989 –6.989
    DownLoad: CSV

    表 4  85Rbn磁矩和塞曼能级间隔模型与实验结果比较

    Table 4.  Comparison of experiment values and calculated values of magnetic moment and Zeeman energy level interval of 85Rbn atomic cluster.

    85Rbn 5s
    电子数
    分子态及本
    征值$ {\lambda }_{合} $和s
    模型
    F
    $ {\bar \mu _n}/{\mu _{\text{B}}} $ $ {\bar \mu _n} $相对
    误差/‰
    $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $ $ {\bar E_n} $相对
    误差/‰
    模型 实验 模型 实验
    85Rb1 1 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 3 1/3 0.330120 –9.640 1/3 0.330120 –9.640
    85Rb2 2 $ {}^{3}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1 $ 6 1/6 0.164773 –11.362 1/6 0.164773 –11.362
    85Rb3 3 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 9 1/9 0.109974 –10.234 1/9 0.109974 –10.234
    85Rb5 5 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 15 1/15 0.066044 –9.340 1/15 0.066044 –9.340
    85Rb7 7 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 21 1/21 0.047180 –9.220 1/21 0.047180 –9.220
    85Rb9 9 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 27 1/27 0.036718 –8.614 1/27 0.036718 –8.614
    85Rb11 11 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 33 1/33 0.030046 –8.482 1/33 0.030046 –8.482
    85Rb13 13 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 39 1/39 0.025423 –8.503 1/39 0.025423 –8.503
    85Rb4,6,8,10,12 4, 6, 8, 10, 12 [19, 20, 21] 0 0 0 0 0 0
    平均值 –5.800 –5.800
    DownLoad: CSV

    表 5  87Rbn85Rbn等数簇矩移模型与实验结果对比

    Table 5.  Comparison of experiment values and calculated values of magnetic moment shift interval of 87Rbn and 85Rbn.

    n $ {\bar \mu _n}/{\mu _{\text{B}}} $ 模型矩移
    $ \Delta {\bar \mu _n}/{\mu _{\text{B}}} $
    $ {\bar \mu _n}/{\mu _{\text{B}}} $ 实验矩移
    $ \Delta {\bar \mu _n}/{\mu _{\text{B}}} $
    相对误差/‰
    87Rbn 模型 85Rbn 模型 87Rbn 实验 85Rbn 实验
    1 1/2 1/3 1/6 0.494337 0.330120 0.164217 –14.698
    2 1/4 1/6 1/12 0.246984 0.164773 0.082211 –13.468
    3 1/6 1/9 1/18 0.164598 0.109974 0.054624 –16.768
    4 0 0 0 0 0 0 0
    5 1/10 1/15 1/30 0.098789 0.066044 0.032745 –17.65
    6 0 0 0 0 0 0 0
    7 1/14 1/21 1/42 0.070635 0.047180 0.023455 –14.89
    8 0 0 0 0 0 0 0
    9 1/18 1/27 1/54 0.054953 0.036718 0.018235 –15.31
    10 0 0 0 0 0 0 0
    11 1/22 1/33 1/66 0.044975 0.030046 0.014929 –14.686
    12 0 0 0 0 0 0 0
    13 1/26 1/39 1/78 0.038060 0.025423 0.012637 –14.314
    平均值 –9.368
    DownLoad: CSV

    表 6  87Rbn85Rbn等数簇塞曼能移实验与模型结果比较

    Table 6.  Comparison of experiment values and calculated values of Zeeman energy level shiift interval of 87Rbn and 85Rbn.

    n$ {\bar E_n}/{\mu _{\text{B}}}{H_0} $模型能移
    $\Delta {\bar E_n}/{\mu _{\text{B}}}{H_0} $
    $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $实验能移
    $ \Delta{\bar E_n}/{\mu _{\text{B}}}{H_0} $
    相对误差/‰
    87Rbn 模型85Rbn 模型87Rbn 实验85Rbn 实验
    11/21/31/60.4943370.3301200.164217–14.698
    21/41/61/120.2469840.1647730.082211–13.468
    31/61/91/180.1645980.1099740.054624–16.768
    40000000
    51/101/151/300.0987890.0660440.032745–17.65
    60000000
    71/141/211/420.0706350.0471800.023455–14.89
    80000000
    91/181/271/540.0549530.0367180.018235–15.31
    100000000
    111/221/331/660.0449750.0300460.014929–14.686
    120000000
    131/261/391/780.0380600.0254230.012637–14.314
    平均值–9.368
    DownLoad: CSV

    表 7  实验测量 87Rbn, 85Rbn 光谱中心频率宽度与广泛成分平均宽度BC

    Table 7.  Spectral center frequency width CC and average width BC of 87Rbn, 85Rbn measured by experiments.

    n1579
    1/2 CC87/kHz78.5219.227.928.73
    1/2 CC85/kHz98.3424.8417.0612.41
    CC87/CC850.800.770.460.70
    BC87/kHz812.75167.60116.4089.10
    BC85/kHz510.55113.5174.3558.63
    BC87/BC851.591.471.571.48
    注: 实验测量的1/2 CC是共振峰的半峰高处左半部分对应的中心频率的展宽.
    DownLoad: CSV
    Baidu
  • [1]

    Makarov V I, Kochubei S A, Khmelinskii I V 2003 Chem. Phys. Lett. 376 230Google Scholar

    [2]

    DE Bievre P J, Debus G H 1965 Nucl. Instrum. Meth. 32 224Google Scholar

    [3]

    Bokhan P A, Buchanov V V, Zakrevskii D E, Kazaryan M A, Kalugin M M, Fateev N V 2003 J. Russ. Laser Res. 24 159

    [4]

    Macadam K B, Steibach A, Wieman C 1992 Am. J. Phys. 60 1098Google Scholar

    [5]

    Patrick H, Wieman C E 1991 Rev. Sci. Instrum. 62 2593Google Scholar

    [6]

    Lapitajs G, Hendrickx 1 F, Verbruggen A, Lamberty A 1996 Int. J. Mass. Spectyom. Ion. Proc. 152 69Google Scholar

    [7]

    Minster J F, Allegre C J 1976 Earth. Planet. Sc. Lett. 32 191Google Scholar

    [8]

    De Bievre P 1990 Fresen. J. Anal. Chem. 337 766Google Scholar

    [9]

    Waight T, Baker J, Willigers B 2002 Chem. Geol. 186 99Google Scholar

    [10]

    Nebel O, Mezger K, Scherer E E, Munker C 2005 Int. J. Mass. Spectrom. 246 10Google Scholar

    [11]

    Knight W D, Clemenger K, Walt A, Heer D, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141Google Scholar

    [12]

    Saito S, Ohnishi S 1987 Physics and Chemistry of Small Clusters (New York: New York and London Published in Cooperation with NATO Scientific Affairs Division Plenum Press) p115

    [13]

    Nozue Y, Kodaira T, Ohwashi S, Togashi N, Terasaki O 1996 Surf. Rev. Lett. 3 701Google Scholar

    [14]

    Igarashi M, Kodaira T, Ikeda T, Itoh M, Shimizu T, Goto A , Nozue Y 2003 Physics B 327 72

    [15]

    邸淑红, 张阳, 杨会静, 伞星原, 刘会媛, 张素恒, 李繁麟, 太军君, 周春丽 2021 70 122101Google Scholar

    Di S H, Zhang Y, Yang H J, San X Y, Liu H Y, Zhang S H, Li F L, Tai J J, Zhou C L 2021 Acta Phys. Sin. 70 122101Google Scholar

    [16]

    吴思成, 王祖铨1999近代物理实验 (北京: 北京大学出版社) 第348—358页

    Wu S C, Wang Z Q 1999 Modern Physics Experiment (Beijing: BeijingUniversity Press) pp348–358

    [17]

    格哈德 H (王鼎昌 译) 1983 分子光谱与分子结构(第1卷) (北京: 科学出版社) 第1—272页

    Gerhard H (translated by Wang D C)1983 Molecules Spectroscopy and Molecules Structures (Vol. 1) (Beijing: Science Press) pp1–272

    [18]

    周公度, 叶宪曾2012化学元素综论 (北京: 科学出版社) 第366页

    Zhou G D, Ye X Z 2012 Chemical Elements Survey (Beijing: Science Press) p366

    [19]

    Jahn H A, Teller E 1937 Proc. Roy. Soc. A 161 220

    [20]

    Jahn H A 1938 Proc. Roy. Soc. A 164 117

    [21]

    Kubo R 1962 J. Phys. Soc. Jpn. 17 975Google Scholar

    [22]

    关洪 2000 量子力学基础 (北京: 高等教育出版社) 第168—174页

    Guan H 2000 Basic Quantum Mechanics (Beijing: Higher Education Press) pp168–174

    [23]

    Ekstrom C, Ingelman S, Wannberg G, Skarestad M, 1978 Nucl. Phys. A 311 269Google Scholar

  • [1] Liu Xuan, Gao Teng, Xie Shi-Jie. Isotope effect of carrier transport in organic semiconductors. Acta Physica Sinica, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [2] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [3] Li Wen-Tao, Yu Wen-Tao, Yao Ming-Hai. H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach. Acta Physica Sinica, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [4] Shen Yong, Dong Jia-Qi, Xu Hong-Bing. Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [5] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao. Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [6] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [7] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [8] Wang Jie-Min, Zhang Lei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. A Multi-reference configuration interaction investigation of the X2+and A2 low-lying electronic states of AsO+ isotope ion. Acta Physica Sinica, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [9] Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energetic hydrogen isotopes bombarding the crystalline graphite(001). Acta Physica Sinica, 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [10] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [11] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [12] Linghu Rong-Feng, Xu Mei, Wang Xiao-Lu, Lü Bing, Yang Xiang-Dong. The effect of symmetrical isotopic substitution in Ne-H2 collision. Acta Physica Sinica, 2010, 59(4): 2416-2422. doi: 10.7498/aps.59.2416
    [13] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [14] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong. Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [15] Sheng Zong-Qiang, Guo Jian-You. Systematic investigation of shape-coexistence in Se,Kr,Sr and Zr isotopes with relativistic mean field theory. Acta Physica Sinica, 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [16] Luo Wen-Lang, Ruan Wen, Zhang Li, Xie An-Dong, Zhu Zheng-He. Analytical potential energy function for tritium water molecule T2O(X1A1). Acta Physica Sinica, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [17] Wang Rong-Kai, Shen Guang-Xian, Song Xiao-Shu, Linghu Rong-Feng, Yang Xiang-Dong. Influence of He isotope on the differential cross section for He-NO collision system. Acta Physica Sinica, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [18] Zhang Li, Zhu Zheng-He, Yang Ben-Fu, Long Xing-Gui, Luo Shun-Zhong. Electron-vibration approximation method for hydrogen isotope compounds TiH2,TiD2 and TiT2. Acta Physica Sinica, 2006, 55(10): 5418-5423. doi: 10.7498/aps.55.5418
    [19] Zheng Li-Ping, Zhang Hu-Yong, Wang Ting-Tai, Ma Yu-Gang. Analysis of the contributions of PKA and SKA to the isotope enrichment. Acta Physica Sinica, 2004, 53(5): 1577-1582. doi: 10.7498/aps.53.1577
    [20] LI WEN-FEI, ZHANG FENG-SHOU, CHEN LIE-WEN. CHEMICAL INSTABILITY AND ISOSPIN EFFECTS IN ISOTOPIC DISTRIBUTIONS. Acta Physica Sinica, 2001, 50(6): 1040-1045. doi: 10.7498/aps.50.1040
  • supplement 2023年72卷182101-补充材料.ZIP supplement
Metrics
  • Abstract views:  2786
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2023
  • Accepted Date:  02 July 2023
  • Available Online:  18 July 2023
  • Published Online:  20 September 2023

/

返回文章
返回
Baidu
map