-
Discharge chamber length is one of the factors in optimizing the electron cyclotron resonance ion thruster performance. It adjusts the distance between bulk plasma and grid system to change the plasma density upstream of the screen grid, which will affect the ion beam current and focusing state to achieve optimization purpose. However, new evidence shows the discharge chamber length plays an important role in ionization during ion beam extraction, which means that the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster should be reexamined. After applying grid voltages, another high electron temperature region located upstream of the screen grid is observed in the integrated simulation using particle-in-cell with Monte Carlo collision method, but it is not observed in the traditional discharge chamber simulation. It is believed in the paper that the high electron temperature region exists objectively, because the Child-Langmuir sheath will repel electrons moving towards screen grid back to magnetic mirrors again. Those electrons will gain energy from microwave, and finally form a high electron temperature region along the Child-Langmuir sheath. This phenomenon implies that discharge chamber length can adjust the high electron temperature distribution upstream of screen grid to affect the plasma generation. Therefore, in this work, the effect of discharge chamber length on discharge and ion beam performance is systematically studied by adopting the integrated simulation. In this paper, three ion thrusters with different discharge chamber lengths are simulated. Under the conditions of same magnetic field and operation parameters, the comparisons of electron energy gain, plasma parameter distributions and ion beam current among the three ion thrusters are conducted. The results show that shorter discharge chamber length has higher electron energy gain, plasma density and voltage, but smaller ion beam current. This abnormal phenomenon can also be seen experimentally. By analyzing the ionization rate inside the chamber, it can be seen that high-temperature electrons upstream of the screen grid have a significant contribution to ionization. And thus, a little bit longer discharge chamber length with lower plasma density inside the chamber has bigger ion beam current for having higher plasma density upstream of the screen grid. According to this phenomenon, an electron heating mode is proposed: electrons gain energy by reciprocating through the electron cyclotron resonance layer between the Child-Langmuir sheath and magnetic mirrors. This heating mode can be used as a supplement to the electronic constraints outside the magnetic mirrors to improve the energy utilization efficiency of the thruster, which can provide a new insight into the electron cyclotron resonance ion thruster design in the future.
-
Keywords:
- electron cyclotron resonance /
- ion thruster /
- discharge chamber length
[1] Levchenko I, Keidar M, Cantrell J, et al. 2018 Nature 562 7726
[2] Serjeant S, Elvis M and Tinetti G 2020 Nat. Astron. 4
[3] O’Reilly D, Herdrich G, and Kavanagh DF 2021 Aerospace 8 22Google Scholar
[4] 于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1
Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propuls. Tech. 41 1
[5] 杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78
Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 78
[6] Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, Nakazawa S 2017 Space Sci. Rev. 208 3Google Scholar
[7] 韩罗峰, 朱康武, 黄文斌, 于学文, 张辰乙, 鲁超, 刘通, 李航, 黄静 2022 真空与低温 28 98Google Scholar
Han L F, Zhu K W, Huang W B, Yu X W, Zhang C Y, Lu C, Liu T, Li H, Huang J 2022 Vacuum Cry. 28 98Google Scholar
[8] Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 157
[9] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 70 075204Google Scholar
Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar
[10] Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar
[11] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 68 235202Google Scholar
Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar
[12] Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronaut. 196
[13] Fu S H, Ding Z F 2022 IEEE Tran. Pla. Sci. 50 6
[14] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰 2015 64 215202Google Scholar
Tang M J, Yang J, Jin Y Z, Luo L T, Feng B B 2015 Acta Phys. Sin. 64 215202Google Scholar
[15] 夏旭 2022 博士学位论文(西安: 西北工业大学)
Xia X 2022 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)
[16] 付瑜亮 2022 博士学位论文(西安: 西北工业大学)
Fu Y L 2022 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)
[17] 迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社 ) 第379—383页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp379–383 (in Chinese)
[18] Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395
[19] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩 2022 71 085203Google Scholar
Fu Y L, Yang J, Wang B, Hu Z, Xia X, Mou H 2022 Acta Phys. Sin. 71 085203Google Scholar
[20] Yamashita Y, Tsukizaki R, and Nishiyama K 2022 Vacuum 200 110962Google Scholar
[21] Yamashita Y, Tsukizaki R and Nishiyama K 2021 Plasma Sources Sci. Technol. 30 5023
-
图 5 放电阶段的离子分布 (a) L = 7.6 mm,
${\varphi }_{{\rm{s}}{\rm{c}}} = 0~{\rm{V}};$ (b) L = 8.6 mm,$ {\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;\left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}},\; {\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}} $ Figure 5. Ion distributions in discharge stage: (a) L = 7.6 mm,
$ {\varphi }_{{\rm{s}}{\rm{c}}} = 0\;{\rm{V}}; $ (b) L = 8.6 mm,${\varphi }_{{\rm{sc}}} = 0\;{\rm{V}};\;({\rm{c}})\; L = 9.6\;{\rm{mm}},\; {\varphi }_{{\rm{sc}}} = 0\;{\rm{V}}$ 图 6 放电阶段的电势分布 (a) L = 7.6 mm,
${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};$ (b) L = 8.6 mm,${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;({\rm{c}})~ L = 9.6{\rm{ }}{\rm{m}}{\rm{m}}, \;{\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}}$ Figure 6. Potential distributions in discharge stage: (a) L = 7.6 mm,
${\varphi }_{{\rm{s}}{\rm{c}}}=0~{\rm{V}};$ (b) L = 8.6 mm,${\varphi }_{{\rm{s}}{\rm{c}}} = 0\;{\rm{V}};\;\left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}}, \;{\varphi }_{{\rm{s}}{\rm{c}}} = 0\;{\rm{V}}$ 图 8 引出阶段的离子分布 (a) L = 7.6 mm,
$ {\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}}; $ (b) L = 8.6 mm,${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};$ $\left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}}, $ ${\varphi }_{{\rm{s}}{\rm{c}}}=$ 300 VFigure 8. Ion distributions in extraction stage: (a) L = 7.6 mm,
$ {\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}}; $ (b) L = 8.6 mm,${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};$ $({\rm{c}})~L=9.6~{\rm{mm}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}}$ .图 10 电子温度分布 (a) L = 7.6 mm,
${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};$ (b) L = 8.6 mm,${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;\left({\rm{c}}\right)L=9.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;\left({\rm{d}}\right)L=7.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};\; $ $ \left({\rm{e}}\right)L= 8.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};\;\left({\rm{f}}\right)L=9.6\;{\rm{m}}{\rm{m}}, {\varphi }_{{\rm{s}}{\rm{c}}}=300{\rm{V}}$ Figure 10. Electron temperature distributions: (a) L = 7.6 mm,
${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};$ (b) L = 8.6 mm,${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;\left({\rm{c}}\right)L=9.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}}; $ $ \;\left({\rm{d}}\right)L=7.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};\;\left({\rm{e}}\right)L=8.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};\;\left({\rm{f}}\right)L=9.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}}$ .图 11
$ {\varphi }_{{\rm{s}}{\rm{c}}} $ = 300 V和$ {\varphi }_{{\rm{s}}{\rm{c}}} $ = 0 V的电离率分布对比 (a) L = 7.6 mm; (b) L = 8.6 mm;$ \left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}} $ Figure 11. Comparison of ionization rate distributions between
${\varphi }_{{\rm{sc}}}$ = 300 V with${\varphi }_{{\rm{sc}}}$ = 0 V (a) L = 7.6 mm; (b) L = 8.6 mm;$ \left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}} $ -
[1] Levchenko I, Keidar M, Cantrell J, et al. 2018 Nature 562 7726
[2] Serjeant S, Elvis M and Tinetti G 2020 Nat. Astron. 4
[3] O’Reilly D, Herdrich G, and Kavanagh DF 2021 Aerospace 8 22Google Scholar
[4] 于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1
Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propuls. Tech. 41 1
[5] 杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78
Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 78
[6] Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, Nakazawa S 2017 Space Sci. Rev. 208 3Google Scholar
[7] 韩罗峰, 朱康武, 黄文斌, 于学文, 张辰乙, 鲁超, 刘通, 李航, 黄静 2022 真空与低温 28 98Google Scholar
Han L F, Zhu K W, Huang W B, Yu X W, Zhang C Y, Lu C, Liu T, Li H, Huang J 2022 Vacuum Cry. 28 98Google Scholar
[8] Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 157
[9] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 70 075204Google Scholar
Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar
[10] Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar
[11] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 68 235202Google Scholar
Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar
[12] Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronaut. 196
[13] Fu S H, Ding Z F 2022 IEEE Tran. Pla. Sci. 50 6
[14] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰 2015 64 215202Google Scholar
Tang M J, Yang J, Jin Y Z, Luo L T, Feng B B 2015 Acta Phys. Sin. 64 215202Google Scholar
[15] 夏旭 2022 博士学位论文(西安: 西北工业大学)
Xia X 2022 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)
[16] 付瑜亮 2022 博士学位论文(西安: 西北工业大学)
Fu Y L 2022 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)
[17] 迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社 ) 第379—383页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp379–383 (in Chinese)
[18] Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395
[19] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩 2022 71 085203Google Scholar
Fu Y L, Yang J, Wang B, Hu Z, Xia X, Mou H 2022 Acta Phys. Sin. 71 085203Google Scholar
[20] Yamashita Y, Tsukizaki R, and Nishiyama K 2022 Vacuum 200 110962Google Scholar
[21] Yamashita Y, Tsukizaki R and Nishiyama K 2021 Plasma Sources Sci. Technol. 30 5023
Catalog
Metrics
- Abstract views: 2430
- PDF Downloads: 59
- Cited By: 0