-
空间推进所用的电子回旋共振离子源(ECRIS)应具有体积小、效率高的特点. 本文研究的ECRIS使用永磁体环产生磁场, 有效减小了体积, 该离子源利用微波在磁场中加热电子, 电子与中性气体发生电离碰撞产生等离子体. 磁场在微波加热电子的过程中起关键作用, 同时影响离子源内等离子体的约束和输运. 通过比较四种磁路结构离子源的离子电流引出特性来研究磁场对10 cm ECRIS性能的影响. 实验发现: 在使用氩气的条件下, 特定结构的离子源可引出160 mA的离子电流, 最高推进剂利用率达60%, 最小放电损耗为120 WA-1; 所有离子源均存在多个工作状态, 工作状态在微波功率、气体流量、引出电压变化时会发生突变. 离子源发生状态突变时的微波功率、气体流量的大小与离子源内磁体的位置有关. 通过比较不同离子源的引出离子束流、放电损耗、气体利用率、工作稳定性的差异, 归纳了磁场结构对此种ECRIS引出特性的影响规律, 分析了其中的机理. 实验结果表明: 保持输入微波功率、气体流量、引出电压不变时, 增大共振区的范围、减小共振区到栅极的距离, 离子源能引出更大的离子电流; 减小共振区到微波功率入口、气体入口的距离能降低维持离子源高状态所需的最小微波功率和最小气体流量, 提高气体利用率, 但会导致放电损耗增大. 研究结果有助于深化对此类离子源工作过程的认识, 为其设计和性能优化提供参考.Electron cyclotron resonance ion source (ECRIS) for space propulsion requires to be compact and efficient. In this work, ECRIS, which generates magnetic field through permanent magnets, is compact and heats electrons by microwave in magnetic field to induce ionization collision and produce plasma. In ECRIS, magnetic field is crucial in gas discharge, plasma confinement and transport. Due to the complex interaction among the processes, including plasma generation, wave transmission and ion extraction, the effects of magnetic field on the performance of ECRIS are complex. In this paper, the effects of magnetic field topology on the performance of the ECRIS are studied experimentally. Argon is discharged by microwaves in four types of ion sources, different in the magnet positions and the ion beam extracted. The gas flow rate varies from 30 to 210 g/s, the microwave power from 10 to 20 W and the extracting voltage form 500 to 1500 V. The properties of the ion sources are analyzed by comparing their extracted ion beams, propellant utilization efficiency, discharge loss and stability. Results show that the maximum ion beam, the highest gas utilization efficiency and the minimum discharge loss are respectively 160 mA, 60%, and 120 WA-1. Each ion source presents more than one mode, determined by the microwave power and the gas flow rate, and affected by the extracting voltage. The microwave power and the gas flow rate at which the ion source mode changes relative to the position of the magnets. Finally, the influences of magnetic topology on the performance of the ion source are summarized and analyzed. It is concluded that inside this kind of ECRIS, the magnetic field featured by a wide electron cyclotron resonance (ECR) zone, and the narrow gap between the ECR zone and the screen grid will increase the extracted ion beam at the same level of the input power and the gas supply. But it is difficult to achieve high gas utilization efficiency in the ion source with such a structure. By keeping the ECR zone close to the power entrance, the gas inlet will significantly decrease the threshold for the power and gas consumption to sustain the high current mode. But the discharge loss in the ion source of such a structure is huge. Elaborate considerations should be taken to balance the magnitude of the extracted ion beam and the efficiency. These results may improve the understanding of the working process of this type of ECRIS and help the design processes.
[1] Geller R 1998 Rev. Sci. Instrum. 69 1302
[2] Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y, Chen J E 2015 Chin. Phys. B 24 075203
[3] Gammino S, Celona L, Ciavola G 2010 Rev. Sci. Instrum. 81 02B313
[4] Matsuoka M, ono K 1991 J. Vac. Sci. Technol. A 9 691
[5] Miller D B 1966 IEEE Trans. Microw. Theory Tech. 16 162
[6] Hank G 1987 J. Spacecr. Rockets 24 437
[7] Sercel J C 1988 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Boston, USA, July 11-13, 1988 AIAA-88-2916
[8] Kuninaka H 2002 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Indianapolis, Indiana, July 7-10, 2002 AIAA-2002-3563
[9] Foster J E, Patterson M J 2003 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Huntsville, Alabama, July 20-23, 2003 AIAA-2003-5012
[10] Jarrige J, Elias P, Cannat F, Packan D 2013 44th AIAA Plasmadynamics and Lasers Conference San Diego, USA, June 24-27, 2013 AIAA-2013-2628
[11] Kuninaka H, Nishiyama K, Funaki I, Shimizu Y, Yamada T, Kawaguchi J 2006 IEEE Trans. Plasma Sci. 34 2125
[12] Normile D 2010 Science 328 565
[13] Tsukizaki R, Togo H, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propul. Power 30 1383
[14] Meng Z Q, Yang J, Xu Y Q, Li P F 2011 J. Propul. Tech. 32 421 (in Chinese) [孟志强, 杨涓, 许映乔, 李鹏飞 2011 推进技术 32 421]
[15] Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8071 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 59 8071]
[16] Yang J, Wang Y, Meng Z Q, Li P F 2013 Mech. Sci. Tech. Aerosp. Eng. 32 203 (in Chinese) [杨涓, 王阳, 孟志强, 李鹏飞 2013 机械科学与技术 32 203]
[17] Yang T L 2009 M. S. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [杨铁链 2009 硕士学位论文 (西安: 西北工业大学)]
[18] Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺2014 63 182901]
[19] Chen M L, Xia G Q, Xu Z Q, Mao G W 2015 Acta Phys. Sin. 64 094104 (in Chinese) [陈茂林, 夏广庆, 徐宗琦, 毛根旺 2015 64 094104]
[20] Veerasingam R, Campbell R, Klevans E, McGrath R 1994 Plasma Sources Sci. Technol. 3 142
-
[1] Geller R 1998 Rev. Sci. Instrum. 69 1302
[2] Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y, Chen J E 2015 Chin. Phys. B 24 075203
[3] Gammino S, Celona L, Ciavola G 2010 Rev. Sci. Instrum. 81 02B313
[4] Matsuoka M, ono K 1991 J. Vac. Sci. Technol. A 9 691
[5] Miller D B 1966 IEEE Trans. Microw. Theory Tech. 16 162
[6] Hank G 1987 J. Spacecr. Rockets 24 437
[7] Sercel J C 1988 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Boston, USA, July 11-13, 1988 AIAA-88-2916
[8] Kuninaka H 2002 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Indianapolis, Indiana, July 7-10, 2002 AIAA-2002-3563
[9] Foster J E, Patterson M J 2003 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Huntsville, Alabama, July 20-23, 2003 AIAA-2003-5012
[10] Jarrige J, Elias P, Cannat F, Packan D 2013 44th AIAA Plasmadynamics and Lasers Conference San Diego, USA, June 24-27, 2013 AIAA-2013-2628
[11] Kuninaka H, Nishiyama K, Funaki I, Shimizu Y, Yamada T, Kawaguchi J 2006 IEEE Trans. Plasma Sci. 34 2125
[12] Normile D 2010 Science 328 565
[13] Tsukizaki R, Togo H, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propul. Power 30 1383
[14] Meng Z Q, Yang J, Xu Y Q, Li P F 2011 J. Propul. Tech. 32 421 (in Chinese) [孟志强, 杨涓, 许映乔, 李鹏飞 2011 推进技术 32 421]
[15] Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8071 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 59 8071]
[16] Yang J, Wang Y, Meng Z Q, Li P F 2013 Mech. Sci. Tech. Aerosp. Eng. 32 203 (in Chinese) [杨涓, 王阳, 孟志强, 李鹏飞 2013 机械科学与技术 32 203]
[17] Yang T L 2009 M. S. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [杨铁链 2009 硕士学位论文 (西安: 西北工业大学)]
[18] Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺2014 63 182901]
[19] Chen M L, Xia G Q, Xu Z Q, Mao G W 2015 Acta Phys. Sin. 64 094104 (in Chinese) [陈茂林, 夏广庆, 徐宗琦, 毛根旺 2015 64 094104]
[20] Veerasingam R, Campbell R, Klevans E, McGrath R 1994 Plasma Sources Sci. Technol. 3 142
计量
- 文章访问数: 6676
- PDF下载量: 202
- 被引次数: 0