-
Optics thermal deformation is an important factor that impacts the performance and lifetime of ion thrusters. Although some theoretical reflearch concerned with this problem was reported, its mechanism has not been fully understood. In this study, numerical investigations are performed to explain the effect of thermal deformation on the performance and lifetime of ion thrusters. The transient behavior of charged particles is calculated using a particle-in-cell simulation, while the momentum transfer collision and the charge exchange collision are calculated by means of the Monte Carlo method. Electron backstreaming restriction, perveance restriction, ions through rate, and divergence angle losses are compared and analyzed for optics deformed and undeformed. And the influence of these factors on thruster’s performance and lifetime is discussed. Results show that the ion through rate of the screen grid increases when optics begin deformed, and the thrust is slightly higher than the theoretical values predicted; the perveance threshold of the accelerator grid increases with optics haveing thermal deformation, while the crossover limit threshold is little changed, namely the thruster can be operated in conditions of a larger beam current; the electron backstreaming restriction threshold is significantly lower under a high beam current condition with optics deformed, which means that a lower accelerating gate bias is necessary to ensure thruster work. For the less obvious change of acceleratng grid current when the beam is focused, there is no moreflerosion and change of lifetime. Results provide a reflerence for the optimization design of optics and evaluation of thruster performance and lifetime.
-
Keywords:
- ion thruster /
- optic /
- thermal deformation /
- plasma simulation
[1] Sovey J S, Rawlin V K, Patterson M J 2001 J. Propuls. Power 17 517
[2] Patterson M J, Sovey J S 2013 J. Aerospace Engineering 26 300
[3] Moskovitz N A, Abe S, Pan K S, Osip D J, Pefkou D, Melita M D, Elias M, Kitazato K, Bus S J, Demeo F E, Binzel R P, Abell P A 2013 Icarus 224 24
[4] Kaufman H R 1974 Advances in Electronics and Electron Physics 36 265
[5] Bundesmann C, Tartz M, Scholze F, Neumann H, Leiter H J, Scortecci F 2011 Journal of Propulsion and Power 27 532
[6] Noord J V, Gallimore A, Rawlin V K 2000 J. Propuls. Power 16 357
[7] Zhen M F 2006 Vacuum & Cryogenics 12 33 (in Chinese) [郑茂繁 2006 真空与低温 12 33]
[8] Wirz R E, Karz I, Goebel D M, Anderson J R 2011 J. Propul. Power 27 206
[9] Wang J, Polk J, Brophy J, Katz J 2003 J. Propul. Power 19 1192
[10] Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 63 182901]
[11] Wang H Y, Jiang W, Sun P, Kong L B 2014 Chin. Phys. B 23 035204
[12] Duan P, Qin H J, Zhou X W, Cao A N, Liu J Y, Qing S W 2014 Acta Phys. Sin 63 085204 (in Chinese) [段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟 2014 63 085204]
[13] Sun A B 2010 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese) [孙安邦2010博士学位论文(西安: 西北工业大学)]
[14] Chen M L, Mao G W, Xia G Q, Yang J, Sun A B 2012 Journal of propulsion technology 33 150 (in Chinese) [陈茂林, 毛根旺, 夏广庆, 杨涓, 孙安邦 2012 推进技术 33 150]
[15] Miller J S, Pullins S H, Levandier D J, Chiu Y, Dressler R A 2002 J. Appl. Phys. 91 984
[16] Sudhakar M, James A M 2010 J. Propul. Power 26 673
[17] Jia Y H, Zhang T P, Zhen M F, Li X K 2012 Journal of Propulsion Technology 33 991 (in Chinese) [贾艳辉, 张天平, 郑茂繁, 李兴坤 2012 推进技术 33 991]
-
[1] Sovey J S, Rawlin V K, Patterson M J 2001 J. Propuls. Power 17 517
[2] Patterson M J, Sovey J S 2013 J. Aerospace Engineering 26 300
[3] Moskovitz N A, Abe S, Pan K S, Osip D J, Pefkou D, Melita M D, Elias M, Kitazato K, Bus S J, Demeo F E, Binzel R P, Abell P A 2013 Icarus 224 24
[4] Kaufman H R 1974 Advances in Electronics and Electron Physics 36 265
[5] Bundesmann C, Tartz M, Scholze F, Neumann H, Leiter H J, Scortecci F 2011 Journal of Propulsion and Power 27 532
[6] Noord J V, Gallimore A, Rawlin V K 2000 J. Propuls. Power 16 357
[7] Zhen M F 2006 Vacuum & Cryogenics 12 33 (in Chinese) [郑茂繁 2006 真空与低温 12 33]
[8] Wirz R E, Karz I, Goebel D M, Anderson J R 2011 J. Propul. Power 27 206
[9] Wang J, Polk J, Brophy J, Katz J 2003 J. Propul. Power 19 1192
[10] Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 63 182901]
[11] Wang H Y, Jiang W, Sun P, Kong L B 2014 Chin. Phys. B 23 035204
[12] Duan P, Qin H J, Zhou X W, Cao A N, Liu J Y, Qing S W 2014 Acta Phys. Sin 63 085204 (in Chinese) [段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟 2014 63 085204]
[13] Sun A B 2010 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese) [孙安邦2010博士学位论文(西安: 西北工业大学)]
[14] Chen M L, Mao G W, Xia G Q, Yang J, Sun A B 2012 Journal of propulsion technology 33 150 (in Chinese) [陈茂林, 毛根旺, 夏广庆, 杨涓, 孙安邦 2012 推进技术 33 150]
[15] Miller J S, Pullins S H, Levandier D J, Chiu Y, Dressler R A 2002 J. Appl. Phys. 91 984
[16] Sudhakar M, James A M 2010 J. Propul. Power 26 673
[17] Jia Y H, Zhang T P, Zhen M F, Li X K 2012 Journal of Propulsion Technology 33 991 (in Chinese) [贾艳辉, 张天平, 郑茂繁, 李兴坤 2012 推进技术 33 991]
Catalog
Metrics
- Abstract views: 6237
- PDF Downloads: 235
- Cited By: 0