-
A novel mesoporous silica foam (MCF) with a specific surface area of 712.5 m2/g and a pore volume of 2.44 cm3/g is synthesized by using triblock copolymer poly (ethylene oxide, polypropylene oxide and ethylene oxide, P123) as template and TEOS (C8H20O4Si) as silicon source. The effect of polyethylenimide (PEI) modified MCF on nanoscale pore structure is studied by positron annihilation lifetime spectroscopy (PALS) and conventional characterization methods, such as N2 adsorption desorption, transmission electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy. The results show that the synthesized MCF has an obvious disordered mesoporous structure, and a continuous porous network with window connection between the pores is formed. Meanwhile, it can be seen directly that PEI is successfully introduced into MCF pore channels. In order to evaluate the pore size and its distribution more comprehensively, the mechanism of positron annihilation which is highly sensitive to nanometer scale open volumes in PEI loaded MCF is studied. It is found that there are two long life components τ3 and τ4, indicating the micropores and mesopores co-existing in the sample. Furthermore, the introduction of PEI molecules results in a significant decrease in τ3 and τ4, and the lifetime values are then corrected by using the positron annihilation rate formula in pure gas to calculate the pore size. The results show that the pore size gradually decreases with the filling of the organic molecule PEI. This provides a new insight into the mechanism of regulating the pore structure of MCF by polyethyleneimine modification, as well as the characterization of pore structure in organic-modified mesoporous molecular sieves.
[1] Song C F, Liu Q L, Ji N, Deng S, Zhao J, Li Y, Song Y J, Li H L 2018 Renewable Sustainable Energy Rev. 82 215
Google Scholar
[2] Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W 2002 Energy Fuels 16 1463
Google Scholar
[3] Ma X L, Wang X X, Song C S 2009 J. Am. Chem. Soc. 131 5777
Google Scholar
[4] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548
Google Scholar
[5] Xiong H F, Zhang Y H, Wang S G, Liew K Y, Li J L 2008 J. Phys. Chem. A 112 9706
Google Scholar
[6] Liu H, Wang G X, Liu J, Qiao S Z, Ahn H 2011 J. Mater. Chem. A 21 3046
Google Scholar
[7] Zhang Z Y, Zuo F, Feng P Y 2010 J. Mater. Chem. A 20 2206
Google Scholar
[8] Lu B W, Kawamoto K 2013 J. Environ. Chem. Eng. 1 300
Google Scholar
[9] Belmabkhout Y, Serna-Guerrero R, Sayari A 2010 Ind. Eng. Chem. Res. 49 359
Google Scholar
[10] Kim S, Ida J, Guliants V V, Lin Y S 2005 J. Phys. Chem. B 109 6287
Google Scholar
[11] Wang L, Ma L, Wang A, Liu Q, Zhang T 2007 Chin. J. Catal. 28 805
Google Scholar
[12] Zheng F, Tran D N, Busche B J, Fryxell G E, Addleman R S, Zemanian T S, Aardahl C L 2005 Ind. Eng. Chem. Res 44 3099
Google Scholar
[13] Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P 2008 Microporous Mesoporous Mater. 116 358
Google Scholar
[14] Mosquera M J, Pozo J, Esquivias L, Rivas T, Silva B 2002 J. Non-Cryst. Solids 311 185
Google Scholar
[15] Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193
[16] Zaleski R 2015 Nukleonika 60 795
Google Scholar
[17] Schmidt-Winkel P, Lukens W W, Yang P, Margolese D I, Lettow J S, Ying J Y, Stucky G D 2000 Chem. Mater. 12 686
Google Scholar
[18] Schmidt-Winkel P, Lukens W W, Zhao D, Yang P, Chmelka B F, Stucky G D 1999 J. Am. Chem. Soc. 121 254
Google Scholar
[19] Song T, Zhang P, Zhang C, Gong L L, Cao X Z, Wang B Y, Yu R S, Zhou W 2022 Microporous Mesoporous Mater. 334 111761
Google Scholar
[20] Chen Q j, Fan F C, Long D H, Liu X J, Lian X Y, Qiao W M, Ling L C 2010 Ind. Eng. Chem. Res. 49 11408
Google Scholar
[21] Ouyang J, Zheng C H, Gu W, Zhang Y, Yang H M, Suib S L 2018 Chem. Eng. J. 337 342
Google Scholar
[22] Klinthong W, Huang C H, Tan C S 2016 Ind. Eng. Chem. Res. 55 6481
Google Scholar
[23] Ghoul M, Bacquet M, Crini G, Morcellet M 2003 J. Appl. Polym. Sci. 90 799
Google Scholar
[24] Saito H, Hyodo T 2003 Phys. Rev. Lett. 90 193401
Google Scholar
[25] Wiertel M, Surowiec Z, Budzyński M, Gac W 2013 Nukleonika 58 245
[26] 尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义 2023 72 114101
Google Scholar
Yin H, Song T, Peng X G, Zhang P, Yu R S, Chen Z, Cao X Z, Wang B Y 2023 Acta Phys. Sin. 72 114101
Google Scholar
[27] Dull T L, Frieze W E, Gidley D W, Sun J N, Yee A F 2001 J. Phys. Chem. B 105 4657
Google Scholar
-
图 1 (a) PEI改性前后MCF的N2吸附-脱附等温线; (b) 由吸附曲线得到的孔尺寸; (c) 由脱附曲线得到的窗口尺寸; (d) P/P0 = 0.99时, 采用BET方程和单点吸附法计算比表面积和孔体积
Figure 1. (a) N2 adsorption-desorption isotherms of MCF before and after PEI modification; (b) cell size from adsorption curve; (c) window dimensions obtained from desorption curves; (d) specific surface area and pore volume calculated by BET equation and single point adsorption measurement at P/P0 = 0.99.
-
[1] Song C F, Liu Q L, Ji N, Deng S, Zhao J, Li Y, Song Y J, Li H L 2018 Renewable Sustainable Energy Rev. 82 215
Google Scholar
[2] Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W 2002 Energy Fuels 16 1463
Google Scholar
[3] Ma X L, Wang X X, Song C S 2009 J. Am. Chem. Soc. 131 5777
Google Scholar
[4] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548
Google Scholar
[5] Xiong H F, Zhang Y H, Wang S G, Liew K Y, Li J L 2008 J. Phys. Chem. A 112 9706
Google Scholar
[6] Liu H, Wang G X, Liu J, Qiao S Z, Ahn H 2011 J. Mater. Chem. A 21 3046
Google Scholar
[7] Zhang Z Y, Zuo F, Feng P Y 2010 J. Mater. Chem. A 20 2206
Google Scholar
[8] Lu B W, Kawamoto K 2013 J. Environ. Chem. Eng. 1 300
Google Scholar
[9] Belmabkhout Y, Serna-Guerrero R, Sayari A 2010 Ind. Eng. Chem. Res. 49 359
Google Scholar
[10] Kim S, Ida J, Guliants V V, Lin Y S 2005 J. Phys. Chem. B 109 6287
Google Scholar
[11] Wang L, Ma L, Wang A, Liu Q, Zhang T 2007 Chin. J. Catal. 28 805
Google Scholar
[12] Zheng F, Tran D N, Busche B J, Fryxell G E, Addleman R S, Zemanian T S, Aardahl C L 2005 Ind. Eng. Chem. Res 44 3099
Google Scholar
[13] Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P 2008 Microporous Mesoporous Mater. 116 358
Google Scholar
[14] Mosquera M J, Pozo J, Esquivias L, Rivas T, Silva B 2002 J. Non-Cryst. Solids 311 185
Google Scholar
[15] Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193
[16] Zaleski R 2015 Nukleonika 60 795
Google Scholar
[17] Schmidt-Winkel P, Lukens W W, Yang P, Margolese D I, Lettow J S, Ying J Y, Stucky G D 2000 Chem. Mater. 12 686
Google Scholar
[18] Schmidt-Winkel P, Lukens W W, Zhao D, Yang P, Chmelka B F, Stucky G D 1999 J. Am. Chem. Soc. 121 254
Google Scholar
[19] Song T, Zhang P, Zhang C, Gong L L, Cao X Z, Wang B Y, Yu R S, Zhou W 2022 Microporous Mesoporous Mater. 334 111761
Google Scholar
[20] Chen Q j, Fan F C, Long D H, Liu X J, Lian X Y, Qiao W M, Ling L C 2010 Ind. Eng. Chem. Res. 49 11408
Google Scholar
[21] Ouyang J, Zheng C H, Gu W, Zhang Y, Yang H M, Suib S L 2018 Chem. Eng. J. 337 342
Google Scholar
[22] Klinthong W, Huang C H, Tan C S 2016 Ind. Eng. Chem. Res. 55 6481
Google Scholar
[23] Ghoul M, Bacquet M, Crini G, Morcellet M 2003 J. Appl. Polym. Sci. 90 799
Google Scholar
[24] Saito H, Hyodo T 2003 Phys. Rev. Lett. 90 193401
Google Scholar
[25] Wiertel M, Surowiec Z, Budzyński M, Gac W 2013 Nukleonika 58 245
[26] 尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义 2023 72 114101
Google Scholar
Yin H, Song T, Peng X G, Zhang P, Yu R S, Chen Z, Cao X Z, Wang B Y 2023 Acta Phys. Sin. 72 114101
Google Scholar
[27] Dull T L, Frieze W E, Gidley D W, Sun J N, Yee A F 2001 J. Phys. Chem. B 105 4657
Google Scholar
Catalog
Metrics
- Abstract views: 3557
- PDF Downloads: 68
- Cited By: 0