-
Aluminum nanoparticles with an average diameter of about 48 nm are compressed in a cemented-carbide mold under different pressures to produce nanocrystalline aluminum by the hot-pressing technology in a high vacuum condition. The X-ray diffraction and the positron annihilation lifetime spectroscopy (PALS) are used to characterize the microscopic structures of nanocrystalline aluminum. The PALS experimental results indicate that there are three types of defects in nanocrystalline aluminum, i.e., vacancy-like defects, vacancy clusters, and microvoids, which are corresponding to three lifetime components of positrons. The pressure for compaction has a great influence on the positron annihilating behavior. The vacancy clusters transform into the vacancy-like defects with increasing the pressure when it is below 0.39 GPa. The three types of defects tend to be rapidly eliminated in a pressure range from 0.39 GPa to 0.72 GPa. When pressure is above 0.72 GPa, the defects are further eliminated in nanocrystalline aluminum. The density and microhardness of nanocrystalline aluminum increase significantly with increasing the pressure for compaction.
-
Keywords:
- the flow-levitation method /
- the hot-pressing technology /
- aluminum nanocrystalline /
- positron lifetime spectroscopy
[1] Gleiter H 1989 Prog. Mater. Sci. 33 223
[2] Schaefer H E, Wrschum R 1987 Phys. Lett. A 119 370
[3] Qin X Y, Zhu J S, Zhou X Y, Wu X J 1994 Phys. Lett. A 193 335
[4] Zeng X C 2012 M. S. Thesis ( Wuhan: Huazhong University of Science and Technology) (in Chinese) [曾小川 2012 硕士学位论文 (武汉: 华中科技大学)]
[5] Schaefer H E, Wrschum R, Birringer R, Gleiter H 1988 Phys. Rev. B 38 9545
[6] Qin X Y, Zhu J S, Zhang L D, Zhou X Y 1998 J. Phys. Cond. Matter 10 3075
[7] Chu G, Luo J S, Liu W, Tang Y J, Lei H L, Yang S Y 2006 High Power Laser and Particle Beams 18 160 (in Chinese) [楚广, 罗江山, 刘伟, 唐永建, 雷海乐, 杨世源 2006 强激光与粒子束 18 160]
[8] Zhang T, Qiu C, Zhang H J, Dai Y Q, Chen Z Q, Zhang H L, Lei H L 2010 J. Wuhan Univ. (Natural Science Edition) 6 3 (in Chinese) [章婷, 邱诚, 张宏俊, 戴益群, 陈志权, 张洪亮, 雷海乐 2010 武汉大学学报 (理学版) 6 3]
[9] Zhou K, Li H, Pang J B, Wang Z 2012 Physica B 407 1219
[10] Wrschum R, Scheytt M, Schaefer H E 1987 Phys. Stat. Solid. A 102 119
[11] Qi N, Wang Y W, Wang D, Wang D D, Chen Z Q 2011 Acta Phys. Sin. 60 107805 (in Chinese) [祁宁, 王元为, 王栋, 王丹丹, 陈志权 2011 60 107805]
[12] Zhou K, Li H, Wang Z 2013 Chin. Phys. Lett. 30 057804
[13] Chen Z Y, Chen Z Q, Pan R K, Wang S J 2013 Chin. Phys. Lett. 30 027804
[14] Fluss M J, Smedskjaer L C, Chason M K, Legnini D G, Siegel R W 1978 Phys. Rev. B 17 3444
[15] Soininen E, Huomo H, Huttunen P A, Mäkinen J, Vehanen A, Hautojärvi P 1990 Phys. Rev. B 41 6227
[16] Puska M J, Nieminen R M 1983 J. Phys. F 13 333
[17] Li D X, Ping D H, Ye H Q, Qin X Y, Wu X J 1993 Mater. Lett. 18 29
[18] Čížek J, Procházka I, Cieslar M, Kužel R, Kuriplach J, Chmelík F, Islamgaliev R K 2002 Phys. Rev. B 65 094106
[19] Mascher P, Dannefaer S, Kerr D 1989 Phys. Rev. B 40 11764
[20] Dupasquier A, Mills Jr A P 1995 Positron Spectroscopy of Solids (Amsterdam: IOS Press) pp505-522
[21] Niemine R M, Laakkonen J 1979 Appl. Phys. 20 181
-
[1] Gleiter H 1989 Prog. Mater. Sci. 33 223
[2] Schaefer H E, Wrschum R 1987 Phys. Lett. A 119 370
[3] Qin X Y, Zhu J S, Zhou X Y, Wu X J 1994 Phys. Lett. A 193 335
[4] Zeng X C 2012 M. S. Thesis ( Wuhan: Huazhong University of Science and Technology) (in Chinese) [曾小川 2012 硕士学位论文 (武汉: 华中科技大学)]
[5] Schaefer H E, Wrschum R, Birringer R, Gleiter H 1988 Phys. Rev. B 38 9545
[6] Qin X Y, Zhu J S, Zhang L D, Zhou X Y 1998 J. Phys. Cond. Matter 10 3075
[7] Chu G, Luo J S, Liu W, Tang Y J, Lei H L, Yang S Y 2006 High Power Laser and Particle Beams 18 160 (in Chinese) [楚广, 罗江山, 刘伟, 唐永建, 雷海乐, 杨世源 2006 强激光与粒子束 18 160]
[8] Zhang T, Qiu C, Zhang H J, Dai Y Q, Chen Z Q, Zhang H L, Lei H L 2010 J. Wuhan Univ. (Natural Science Edition) 6 3 (in Chinese) [章婷, 邱诚, 张宏俊, 戴益群, 陈志权, 张洪亮, 雷海乐 2010 武汉大学学报 (理学版) 6 3]
[9] Zhou K, Li H, Pang J B, Wang Z 2012 Physica B 407 1219
[10] Wrschum R, Scheytt M, Schaefer H E 1987 Phys. Stat. Solid. A 102 119
[11] Qi N, Wang Y W, Wang D, Wang D D, Chen Z Q 2011 Acta Phys. Sin. 60 107805 (in Chinese) [祁宁, 王元为, 王栋, 王丹丹, 陈志权 2011 60 107805]
[12] Zhou K, Li H, Wang Z 2013 Chin. Phys. Lett. 30 057804
[13] Chen Z Y, Chen Z Q, Pan R K, Wang S J 2013 Chin. Phys. Lett. 30 027804
[14] Fluss M J, Smedskjaer L C, Chason M K, Legnini D G, Siegel R W 1978 Phys. Rev. B 17 3444
[15] Soininen E, Huomo H, Huttunen P A, Mäkinen J, Vehanen A, Hautojärvi P 1990 Phys. Rev. B 41 6227
[16] Puska M J, Nieminen R M 1983 J. Phys. F 13 333
[17] Li D X, Ping D H, Ye H Q, Qin X Y, Wu X J 1993 Mater. Lett. 18 29
[18] Čížek J, Procházka I, Cieslar M, Kužel R, Kuriplach J, Chmelík F, Islamgaliev R K 2002 Phys. Rev. B 65 094106
[19] Mascher P, Dannefaer S, Kerr D 1989 Phys. Rev. B 40 11764
[20] Dupasquier A, Mills Jr A P 1995 Positron Spectroscopy of Solids (Amsterdam: IOS Press) pp505-522
[21] Niemine R M, Laakkonen J 1979 Appl. Phys. 20 181
Catalog
Metrics
- Abstract views: 5805
- PDF Downloads: 357
- Cited By: 0