搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔材料MCM-41的导热研究

黄丛亮 冯妍卉 张欣欣 王戈 李静

引用本文:
Citation:

介孔材料MCM-41的导热研究

黄丛亮, 冯妍卉, 张欣欣, 王戈, 李静

Thermal conductivity of mesoporous material MCM-41

Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Wang Ge, Li Jing
PDF
导出引用
  • 文章根据二氧化硅介孔材料MCM-41纳米孔结构特点,首先建立和验证了纳米结构单元模型,然后使用平衡分子动力学方法模拟了孔壁热导率;接着耦合孔隙内气体导热,开展了一维传热分析,最终提炼出MCM-41的有效热导率表达式;并对壁厚、孔径和孔隙率对热导率的影响进行了分析.研究结果表明,MCM-41具有良好的绝热性能,其有效热导率随孔隙率增大近似呈线性减小,且表现出各向异性;导热性能沿孔道长度方向表现出准一维特性.
    In this paper, the mesoporous structural unit of MCM-41 is established first and the equilibrium molecular dynamics (EMD) numerical simulation is performed to obtain the shell thermal conductivity of MCM-41. Then, based on one-dimensional heat transfer analysis, the analytical expression for effective thermal conductivity of MCM-41 is obtained by coupling heat conduction in air-filled nano-pores and that in the shell. The effects of wall thickness, pore size and porosity on the thermal conductivities of the MCM-41 are further analyzed. It turns out that MCM-41 possesses good thermal insulation and the decrease of effective thermal conductivity is closely linear as porosity increases. Furthermore, the thermal conductivity shows that it is obviously anisotropic and its largest value is along the length of the pores, and that it has the quasi-one-dimensional characteristic.
    • 基金项目: 国家自然科学基金(批准号:50836001)资助的课题.
    [1]

    Selvaraj M, Kawi S 2007 Micropor. and Mesopor. Mater. 98 143

    [2]

    Singh A P, Gandhi D D, Lipp E, Eizenberg M, Ramanath G 2006 J. Appl. Phys. 100 114504

    [3]

    Cai W P, Zhang L D 1997 Physics 24 213(in Chinese)[蔡伟平、张立德 1997 物理 24 213]

    [4]

    Yao S S, Karaguleff C, Gabel A, Fortenberry R, Seaton C T, Stegeman G I 1985 Appl. Phys. Lett. 46 801

    [5]

    Yasuda T, Komiyama H, Tanaka K 1987 Jpn. J. Appl. Phys. 26 818

    [6]

    Coffer J L, Beauchamp G,Zerda T W 1992 J. Non-Cryst. Solids 142 208

    [7]

    Tohge N, Asuka M, Minam T 1992 J. Non-Cryst. Solids 147-148 652

    [8]

    Fan S Q, Cai W L, Mou J M,Chen H Y 2001 Chin. J. Chem. Phys. 14 205 (in Chinese)[樊三强、蔡维理、牟季美、陈慧余 2001 化学 14 205 ]

    [9]

    Vendange V,Coloban P 1993 Mater. Sei. and Eng.A 168 199

    [10]

    Sridhar M R, Yovanovich M M 1994 J. Thermophys. Heat Trans. 8 633

    [11]

    Sridhar M R, Yovanovich M M 1996 ASME J. Heat Trans. 118 3

    [12]

    Williamson M, Majumdar A 1992 ASME J. Heat Trans. 114 802

    [13]

    Kim G S, Hyun S H 2003 J. Non-Crystalline Solids 320 125

    [14]

    Jensen K I, Schultz J M, Kristiansen F H 2004 J. Non-Crystalline Solids 350 351

    [15]

    Reim M, Komer W, Manara J, Korder S, Arduini-Schuster M, Ebert H P ,Fricke J 2005 Solar Energy 79 131

    [16]

    Weckhuysen B M, Ramachandra Rao R, Bodart P, Debras G, Collart O, Voort P V, Schoonheydt R A, Vansant E F 2000 Chem. Eur. J. 6 2960

    [17]

    Zheng S, Gao L, Guo J K 2002 Chem. J. Chin. Univers. 23 1126 (in Chinese)[郑 珊、高 濂、郭景坤 2002 高等学校化学学报 23 1126]

    [18]

    Song C E, Lee S 2002 Chem.Rev. 102 3495

    [19]

    Masteri-Farahani M, Farzaneh F, Ghandi M 2006 J. Mol. Catal. A: Chem. 248 53

    [20]

    Corma A, Navarno M T, Perez P J 1994 J. Chem. Soc., Chem. Commun. 1 147

    [21]

    Reddy K M, Moudrakovski I, Sayanri A 1994 J. Chem. Soc., Chem. Commun. 90 1059

    [22]

    Yuan Z Y, Liu S Q, Chen T H, Wang J Z, Li H X 1995 J. Chem. Soc., Chem. Commun. 9 973

    [23]

    Bischof C,Hartmann M 1998 Proc. Int. Zeolite Conf.12th. 2 809

    [24]

    Li Z P 2003 Ph. D. Dissertation(Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese) [李正平 2003 博士学位论文(上海:中国科学院上海硅酸盐研究所)]

    [25]

    Kleestorfer K, Vinek H, Jentys A 2001 J. Molec. Catal. A: Chem. 166 53

    [26]

    Flikkema E, Bromley S T 2003 Chem. Phys. Lett. 378 622

    [27]

    Patrick K S, Simon R P, Pawel K 2002 Phys. Rev. B 65 144306

    [28]

    Progelhof R C, Throne J L, Ruetsch R R 1976 Polym. Engin. and Sci. 16 615

    [29]

    Lu X, Caps R, Fricke J, Alviso C T, Pekala R W 1995 J. Non-Crystal Solids 188 226

    [30]

    Zeng T F, Chen G 2001 Trans. ASME, J. Heat Trans. 123 340

    [31]

    Kim J H, Feldman A, Novotny D 1999 J. Appl. Phys. 86 3959

    [32]

    Raudzis C E, Schatz F 2003 J. Appl. Phys. 93 6050

    [33]

    Fricke J, Tillotson T 1997 Thin Solid Films 297(1-2) 212

  • [1]

    Selvaraj M, Kawi S 2007 Micropor. and Mesopor. Mater. 98 143

    [2]

    Singh A P, Gandhi D D, Lipp E, Eizenberg M, Ramanath G 2006 J. Appl. Phys. 100 114504

    [3]

    Cai W P, Zhang L D 1997 Physics 24 213(in Chinese)[蔡伟平、张立德 1997 物理 24 213]

    [4]

    Yao S S, Karaguleff C, Gabel A, Fortenberry R, Seaton C T, Stegeman G I 1985 Appl. Phys. Lett. 46 801

    [5]

    Yasuda T, Komiyama H, Tanaka K 1987 Jpn. J. Appl. Phys. 26 818

    [6]

    Coffer J L, Beauchamp G,Zerda T W 1992 J. Non-Cryst. Solids 142 208

    [7]

    Tohge N, Asuka M, Minam T 1992 J. Non-Cryst. Solids 147-148 652

    [8]

    Fan S Q, Cai W L, Mou J M,Chen H Y 2001 Chin. J. Chem. Phys. 14 205 (in Chinese)[樊三强、蔡维理、牟季美、陈慧余 2001 化学 14 205 ]

    [9]

    Vendange V,Coloban P 1993 Mater. Sei. and Eng.A 168 199

    [10]

    Sridhar M R, Yovanovich M M 1994 J. Thermophys. Heat Trans. 8 633

    [11]

    Sridhar M R, Yovanovich M M 1996 ASME J. Heat Trans. 118 3

    [12]

    Williamson M, Majumdar A 1992 ASME J. Heat Trans. 114 802

    [13]

    Kim G S, Hyun S H 2003 J. Non-Crystalline Solids 320 125

    [14]

    Jensen K I, Schultz J M, Kristiansen F H 2004 J. Non-Crystalline Solids 350 351

    [15]

    Reim M, Komer W, Manara J, Korder S, Arduini-Schuster M, Ebert H P ,Fricke J 2005 Solar Energy 79 131

    [16]

    Weckhuysen B M, Ramachandra Rao R, Bodart P, Debras G, Collart O, Voort P V, Schoonheydt R A, Vansant E F 2000 Chem. Eur. J. 6 2960

    [17]

    Zheng S, Gao L, Guo J K 2002 Chem. J. Chin. Univers. 23 1126 (in Chinese)[郑 珊、高 濂、郭景坤 2002 高等学校化学学报 23 1126]

    [18]

    Song C E, Lee S 2002 Chem.Rev. 102 3495

    [19]

    Masteri-Farahani M, Farzaneh F, Ghandi M 2006 J. Mol. Catal. A: Chem. 248 53

    [20]

    Corma A, Navarno M T, Perez P J 1994 J. Chem. Soc., Chem. Commun. 1 147

    [21]

    Reddy K M, Moudrakovski I, Sayanri A 1994 J. Chem. Soc., Chem. Commun. 90 1059

    [22]

    Yuan Z Y, Liu S Q, Chen T H, Wang J Z, Li H X 1995 J. Chem. Soc., Chem. Commun. 9 973

    [23]

    Bischof C,Hartmann M 1998 Proc. Int. Zeolite Conf.12th. 2 809

    [24]

    Li Z P 2003 Ph. D. Dissertation(Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese) [李正平 2003 博士学位论文(上海:中国科学院上海硅酸盐研究所)]

    [25]

    Kleestorfer K, Vinek H, Jentys A 2001 J. Molec. Catal. A: Chem. 166 53

    [26]

    Flikkema E, Bromley S T 2003 Chem. Phys. Lett. 378 622

    [27]

    Patrick K S, Simon R P, Pawel K 2002 Phys. Rev. B 65 144306

    [28]

    Progelhof R C, Throne J L, Ruetsch R R 1976 Polym. Engin. and Sci. 16 615

    [29]

    Lu X, Caps R, Fricke J, Alviso C T, Pekala R W 1995 J. Non-Crystal Solids 188 226

    [30]

    Zeng T F, Chen G 2001 Trans. ASME, J. Heat Trans. 123 340

    [31]

    Kim J H, Feldman A, Novotny D 1999 J. Appl. Phys. 86 3959

    [32]

    Raudzis C E, Schatz F 2003 J. Appl. Phys. 93 6050

    [33]

    Fricke J, Tillotson T 1997 Thin Solid Films 297(1-2) 212

  • [1] 刘晓威, 张可烨. 有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学.  , 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [2] 许松, 唐晓明, 苏远大. 横向各向同性固体材料中含定向非均匀体的有效弹性模量.  , 2015, 64(20): 206201. doi: 10.7498/aps.64.206201
    [3] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究.  , 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [4] 宋永佳, 胡恒山. 含定向非均匀体固体材料的横观各向同性有效弹性模量.  , 2014, 63(1): 016202. doi: 10.7498/aps.63.016202
    [5] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [6] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [7] 钟时, 杨修群, 郭维栋. 局地零平面位移对非均匀地表有效空气动力学参数的影响.  , 2013, 62(14): 144212. doi: 10.7498/aps.62.144212
    [8] 黄瑾, 钟中, 郭维栋, 卢伟. 非均匀地表空气动力学有效粗糙度的统计特征.  , 2013, 62(5): 054204. doi: 10.7498/aps.62.054204
    [9] 霍雅静, 李军刚. 利用因式化纠缠模拟纠缠动力学行为的有效性研究.  , 2012, 61(21): 210304. doi: 10.7498/aps.61.210304
    [10] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究.  , 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [11] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [12] 魏益焕. 克尔-纽曼-反德西特黑洞的有效热力学性质.  , 2010, 59(6): 4385-4389. doi: 10.7498/aps.59.4385
    [13] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法.  , 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [14] 房振乾, 胡 明, 张 伟, 张绪瑞. 基于微拉曼光谱技术的氧化介孔硅热导率研究.  , 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [15] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟.  , 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [16] 李洪玉, 赵 珂, 潘瑞芹, 孙元红, 王传奎. 超短脉冲激光在有机分子材料中的动力学过程研究.  , 2005, 54(5): 2072-2078. doi: 10.7498/aps.54.2072
    [17] 冯维存, 高汝伟, 韩广兵, 朱明刚, 李 卫. NdFeB纳米复合永磁材料的交换耦合相互作用和有效各向异性.  , 2004, 53(9): 3171-3176. doi: 10.7498/aps.53.3171
    [18] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力.  , 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [19] 张现仁, 沈志刚, 陈建峰, 汪文川. 乙烷在中孔分子筛MCM-41中吸附的计算机分子模拟.  , 2003, 52(1): 163-168. doi: 10.7498/aps.52.163
    [20] 陈宗蕴, 周义昌, 黄念宁. 关于标量量子电动力学有效势的泛函算法.  , 1982, 31(5): 660-663. doi: 10.7498/aps.31.660
计量
  • 文章访问数:  9440
  • PDF下载量:  703
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-18
  • 修回日期:  2011-02-21
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map