Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of fundamental frequency performance of SGII-UP laser facility

Xie Jing Wang Li Liu Chong Zhang Yan-Li Liu Qiang Wang Tao Chai Zhi-Hao Xia Zhi-Qiang Yang Lin Zhang Pan-Zheng Zhu Bao-Qiang

Citation:

Improvement of fundamental frequency performance of SGII-UP laser facility

Xie Jing, Wang Li, Liu Chong, Zhang Yan-Li, Liu Qiang, Wang Tao, Chai Zhi-Hao, Xia Zhi-Qiang, Yang Lin, Zhang Pan-Zheng, Zhu Bao-Qiang
PDF
HTML
Get Citation
  • The SGII-UP laser facility is one of the most important high power laser systems in China, and it is also one of a few inertial confinement fusion laser devices that operate all year round in the world. In order to further improve its output capacity to meet higher physical requirements, measures such as increasing the number of neodymium glasses, adopting new N41 neodymium glasses, and improving the energy configuration of xenon lamps are taken to improve the gain capacity of the main amplifier. Calculation of the new main amplifier construction model predicts that the small gain coefficient will reach 4.9%. And further modulation of the laser device shows that when the output of 10 kJ fundamental frequency energy is needed, the injection energy decreases from 5 J to 1.26 J, which supports a higher output energy and a stronger basic frequency output capability. Furthermore, it is analyzed that under different laser pulse injection conditions of 1, 5, 10 ns, the B integral is obviously reduced, which means that the near-filed quality of the beams is better. According a small-size modulation suppression is induced by nonlinear phase shift, and high-fluence laser is expected to pass before and after the improvement, which is a key prerequisite for a higher output energy. Based on these analyses, fundamental frequency output energy values with different pulse injections are calculated and an improvement from 8 kJ to 12.5 kJ output is expected under 10 ns square pulse condition. Tests show that the small signal gain coefficient of the device increases from 4.15% cm to 4.94% cm, which is consistent with simulation results, and the average gain multiple of a single beam increases from 9000 to 118000, which is an order of magnitude higher. The output verifies the fundamental frequency output capacity exceeding 12.5 kJ under 10 ns square pulse as well as a small-size modulation suppression around 0.16 mm–1 as a result of joint action of non-linear phase shift and spatial filtering. After the significant improvement, the SGII-UP laser facility will strongly support more ambitious physical experiment targets.
      Corresponding author: Zhang Pan-Zheng, nwpuzhangpanzheng@163.com
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDA25010100).
    [1]

    Haynam C A, Wegner P J, Auerbach J M, et al. 2007 B. M. Appl. Opt. 46 3276Google Scholar

    [2]

    Vivini P, Nicolaizeau M 2015 Proc. SPIE 9345 934503Google Scholar

    [3]

    高妍绮, 朱宝强, 刘代中, 彭增云, 林尊琪 2011 60 065204Google Scholar

    Gao Y Q, Zhu B Q, Liu D Z, Peng Z Y, Lin Z Q 2011 Acta Phys. Sin. 60 065204Google Scholar

    [4]

    Touze G L, Cabourdin O, Mengue J F, Guenet M, Grebot E, Seznec S E, Jancaitis K S, Marshall C D, Zapata L E, Erlandson A E 1999 Proc. SPIE 3492 630Google Scholar

    [5]

    张华, 范滇元 2001 50 2375Google Scholar

    Zhang H, Fan D Y 2001 Acta Phys. Sin. 50 2375Google Scholar

    [6]

    周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅 2004 53 620Google Scholar

    Zhou W Y, Tian J G, Zang W P, Liu Z B, Zhang C P, Zhang G Y 2004 Acta Phys. Sin. 53 620Google Scholar

    [7]

    Stuart B C, Herman S, Rubenchik A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar

    [8]

    Gao Y Q, Ma W X, Zhu B Q, et al. 2013 IEEE Photonics Conference Bellevue, WA, USA, September 1, 2013 p73

    [9]

    郭爱林, 朱海东, 杨泽平, 李恩德, 谢兴龙, 朱健强, 林尊琪, 马伟新, 朱俭 2013 光学学报 33 0214001Google Scholar

    Guo A L, Zhu H D, Yang Z P, Li E D, Xie X L, Zhu J Q, Lin Z Q, Ma W X, Zhu J 2013 Acta Opt. Sin. 33 0214001Google Scholar

    [10]

    田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 63 125205Google Scholar

    Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar

    [11]

    张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰 2022 71 155201Google Scholar

    Zhang Z, Yuan X H, Zhang Y H, Liu H, Fang K, Zhang C L, Liu Z D, Zhao X, Dong Q L, Liu G Y, Dai Y, Gu H C, Li Y T, Zheng J, Zhong J Y, Zhang J 2022 Acta Phys. Sin. 71 155201Google Scholar

    [12]

    何民卿, 张华, 李明强, 彭力, 周沧涛 2023 72 095201Google Scholar

    He M Q, Zhang H, Li M Q, Peng L, Zhou C T 2023 Acta Phys. Sin. 72 095201Google Scholar

    [13]

    王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵 2021 70 195202Google Scholar

    Wang C, An H H, Xiong J, Fang Z H, Ji Y, Lian C W, Xie Z Y, Guo E F, He Z Y, Cao Z D, Wang W, Yan R, Pei W B 2021 Acta Phys. Sin. 70 195202Google Scholar

    [14]

    熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人 2022 71 215201Google Scholar

    Xiong J, An H H, Wang C, Zhang Z C, Jiao J L, Lei A L, Wang R R, Hu G Y, Wang W, Sun J R 2022 Acta Phys. Sin. 71 215201Google Scholar

    [15]

    周炳琨, 高以智, 陈倜嵘, 陈家骅 2011 激光原理 (第6卷) (北京: 国防工业出版社) 第149页

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2011 Principles of Laser (Vol. 6) (Beijing: National Defense Industry Press) p149

    [16]

    黄晚晴, 张颖, 孙喜博, 耿远超, 王文义, 刘兰琴 2019 激光与光电子学进展 56 121403Google Scholar

    Huang W Q, Zhang Y, Sun X B, Geng Y C, Wang W Y, Liu L Q 2019 Las. Opt. Pro. 56 121403Google Scholar

    [17]

    Manes K R, Spaeth M L, Adams J J, et al. 2015 Fus. Scienc. Techn. 69 146Google Scholar

    [18]

    温磊, 陈林, 陈伟, 胡丽丽, 吴谊群 2016 光学精密工程 24 2925Google Scholar

    Wen L, Chen L, Chen W, Hu L L, Wu Y Q 2016 Opt. Prec. Eng. 24 2925Google Scholar

    [19]

    彭志涛 景峰 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生 2003 52 87Google Scholar

    Peng Z T, Jing F, Liu L Q, Zhu Q H, Chen B, Zhang K, Liu H, Zhang Q Q, Cheng X F, Jiang D B, Liu H J, Peng H S 2003 Acta Phys. Sin. 52 87Google Scholar

    [20]

    赵军普 2006 硕士学位论文(成都: 四川大学)

    Zhao J P 2006 M. S. Thesis (Chengdu: Sichuan University

  • 图 1  神光II升级装置主放大器结构

    Figure 1.  Structure of the main amplifier of SGII-UP laser facility.

    图 2  装置增益性能提升前后装置10 ns方波对应的输入输出能力对比

    Figure 2.  Comparison of input and output capability curve before and after the improvement for 10 ns pulse.

    图 3  装置增益性能提升前后5 ns和10 ns方波下的输出能力与累积B积分的关系对比

    Figure 3.  Comparison of input and accumulated B integral curve under 5 ns and 10 ns pulse before and after the improvement.

    图 4  装置增益性能提升前后1 ns方波下的输出能力与累积B积分及级间B积分∑B的关系对比

    Figure 4.  Comparison of input and accumulated B integral curve under 1 ns flat pulse before and after the improvement.

    图 5  典型斜角波

    Figure 5.  Typical oblique pulse.

    图 6  改进前后高平均功率密度条件下的激光近场对比

    Figure 6.  Comparison of the near-field with high average power density before and after improvement.

    图 7  改进前后高平均功率密度条件下的激光近场功率密度直方图 (a)第5路, 改进前, 输出能量2790 J/1 ns; (b)第5路, 改进后, 输出能量2700 J/1 ns; (c)第8路, 改进前, 输出能量2700 J/1 ns; (d)第8路, 改进后, 输出能量3238 J/1 ns

    Figure 7.  Histogram of the near-field with high average power density before and after improvement: (a) Beam 5, before improvement, with 2790 J/1 ns output; (b) Beam 5, after improvement, with 2700 J/1 ns output; (c) Beam 8, before improvement, with 2700 J/1 ns output; (d) Beam 8, after improvement, with 3238 J/1 ns output.

    图 8  改进前后第5路近场质量分布之功率谱密度曲线

    Figure 8.  Curve of power spectral density before and after improvement for Beam 5.

    图 9  基频12797 J/10 ns末级近场分布

    Figure 9.  Distribution of near field of basic frequency under 12797 J/10 ns output.

    表 1  N31和N41钕玻璃参数对比

    Table 1.  Characteristics comparison of N31 and N41 Nd: glass.

    参数N31N41
    Nd3+掺杂浓度/(1020 cm–1)3.54.2
    受激发射截面/(10–20 cm–3)3.83.9
    荧光寿命/μs310310
    1053 nm非线性折射率系数/(10–13 esu)1.201.05
    1053 nm折射率1.5321.504
    密度/(g·cm–3)2.8502.596
    DownLoad: CSV

    表 2  主放大器改进前后助推放大器和腔放大器的钕玻璃构成

    Table 2.  Configuration of Nd: glass in the main amplifier.

    助推放大器的钕玻璃腔放大器的钕玻璃
    改进前5片N31308片N3122
    改进后5片N41424片N3122 + 5片N3130
    DownLoad: CSV

    表 3  改进后不同钕玻璃材料小信号增益系数模拟计算值

    Table 3.  Calculation value of small gain coefficient of different Nd: glass after improvement.

    钕玻璃材料厚度/mm增益系数/cm–1
    N4142405.24%
    N3130454.90%
    N3122454.70%
    DownLoad: CSV

    表 4  不同脉宽下的装置基频输出能力评估

    Table 4.  Estimation of output capability at different frequencies.

    配置输出能力/kJ
    10 ns 方波10 ns 斜角波5 ns 方波5 ns 斜角波3 ns 方波3 ns 斜角波1 ns 方波
    改进前8.08.08.06.57.44.473.2
    改进后12.512.511.27.38.24.83.45
    DownLoad: CSV

    表 5  升级第三路片放增益提升前后的实测数据

    Table 5.  Measurement value of output energy of SGII-UP Facility Beam 3 before and after improvement.

    发次编号 注入能量/mJ 输出能量/J 放大倍数 增益系数/cm–1
    改进前 20181022008 198.25 628.88 8175 4.10%
    20190525001 189.38 652.30 8877 4.14%
    20190525002 192.30 750.00 10052 4.21%
    改进后 20200826001 14.47 779.33 138810 5.04%
    20200826002 13.38 715.61 137844 5.04%
    DownLoad: CSV

    表 6  升级其他光路片放改进后的实测数据

    Table 6.  Output energy measurement value of other beams of SGII-UP Facility after improvement.

    光束
    编号
    注入能
    量/mJ
    输出能量/J 放大倍数 增益系
    数/cm–1
    光束
    编号
    注入能
    量/mJ
    输出能量/J 放大倍数 增益系
    数/cm–1
    1 13.9 731.8 135111 5.00% 6 28.7 985.4 101343 4.88%
    2 12.8 449.5 103428 4.89% 7 24.2 941.6 115029 4.94%
    4 13.6 492.2 106537 4.91% 8 19.5 959.0 126692 4.98%
    DownLoad: CSV

    表 7  激光近场高峰值功率密度像素点占比

    Table 7.  Percentage of pixels for peak power density of the laser near-field.

    发次编号 激光束
    编号
    > 4 GW/cm2
    像素点占比/%
    > 5 GW/cm2
    像素点占比/%
    20180123002 Beam 5 18.5 2.9
    20201009003 Beam 5 16.5 0.8
    20180123002 Beam 8 17.8 16.2
    20201009003 Beam 8 45.0 8.1
    DownLoad: CSV
    Baidu
  • [1]

    Haynam C A, Wegner P J, Auerbach J M, et al. 2007 B. M. Appl. Opt. 46 3276Google Scholar

    [2]

    Vivini P, Nicolaizeau M 2015 Proc. SPIE 9345 934503Google Scholar

    [3]

    高妍绮, 朱宝强, 刘代中, 彭增云, 林尊琪 2011 60 065204Google Scholar

    Gao Y Q, Zhu B Q, Liu D Z, Peng Z Y, Lin Z Q 2011 Acta Phys. Sin. 60 065204Google Scholar

    [4]

    Touze G L, Cabourdin O, Mengue J F, Guenet M, Grebot E, Seznec S E, Jancaitis K S, Marshall C D, Zapata L E, Erlandson A E 1999 Proc. SPIE 3492 630Google Scholar

    [5]

    张华, 范滇元 2001 50 2375Google Scholar

    Zhang H, Fan D Y 2001 Acta Phys. Sin. 50 2375Google Scholar

    [6]

    周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅 2004 53 620Google Scholar

    Zhou W Y, Tian J G, Zang W P, Liu Z B, Zhang C P, Zhang G Y 2004 Acta Phys. Sin. 53 620Google Scholar

    [7]

    Stuart B C, Herman S, Rubenchik A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar

    [8]

    Gao Y Q, Ma W X, Zhu B Q, et al. 2013 IEEE Photonics Conference Bellevue, WA, USA, September 1, 2013 p73

    [9]

    郭爱林, 朱海东, 杨泽平, 李恩德, 谢兴龙, 朱健强, 林尊琪, 马伟新, 朱俭 2013 光学学报 33 0214001Google Scholar

    Guo A L, Zhu H D, Yang Z P, Li E D, Xie X L, Zhu J Q, Lin Z Q, Ma W X, Zhu J 2013 Acta Opt. Sin. 33 0214001Google Scholar

    [10]

    田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 63 125205Google Scholar

    Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar

    [11]

    张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰 2022 71 155201Google Scholar

    Zhang Z, Yuan X H, Zhang Y H, Liu H, Fang K, Zhang C L, Liu Z D, Zhao X, Dong Q L, Liu G Y, Dai Y, Gu H C, Li Y T, Zheng J, Zhong J Y, Zhang J 2022 Acta Phys. Sin. 71 155201Google Scholar

    [12]

    何民卿, 张华, 李明强, 彭力, 周沧涛 2023 72 095201Google Scholar

    He M Q, Zhang H, Li M Q, Peng L, Zhou C T 2023 Acta Phys. Sin. 72 095201Google Scholar

    [13]

    王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵 2021 70 195202Google Scholar

    Wang C, An H H, Xiong J, Fang Z H, Ji Y, Lian C W, Xie Z Y, Guo E F, He Z Y, Cao Z D, Wang W, Yan R, Pei W B 2021 Acta Phys. Sin. 70 195202Google Scholar

    [14]

    熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人 2022 71 215201Google Scholar

    Xiong J, An H H, Wang C, Zhang Z C, Jiao J L, Lei A L, Wang R R, Hu G Y, Wang W, Sun J R 2022 Acta Phys. Sin. 71 215201Google Scholar

    [15]

    周炳琨, 高以智, 陈倜嵘, 陈家骅 2011 激光原理 (第6卷) (北京: 国防工业出版社) 第149页

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2011 Principles of Laser (Vol. 6) (Beijing: National Defense Industry Press) p149

    [16]

    黄晚晴, 张颖, 孙喜博, 耿远超, 王文义, 刘兰琴 2019 激光与光电子学进展 56 121403Google Scholar

    Huang W Q, Zhang Y, Sun X B, Geng Y C, Wang W Y, Liu L Q 2019 Las. Opt. Pro. 56 121403Google Scholar

    [17]

    Manes K R, Spaeth M L, Adams J J, et al. 2015 Fus. Scienc. Techn. 69 146Google Scholar

    [18]

    温磊, 陈林, 陈伟, 胡丽丽, 吴谊群 2016 光学精密工程 24 2925Google Scholar

    Wen L, Chen L, Chen W, Hu L L, Wu Y Q 2016 Opt. Prec. Eng. 24 2925Google Scholar

    [19]

    彭志涛 景峰 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生 2003 52 87Google Scholar

    Peng Z T, Jing F, Liu L Q, Zhu Q H, Chen B, Zhang K, Liu H, Zhang Q Q, Cheng X F, Jiang D B, Liu H J, Peng H S 2003 Acta Phys. Sin. 52 87Google Scholar

    [20]

    赵军普 2006 硕士学位论文(成都: 四川大学)

    Zhao J P 2006 M. S. Thesis (Chengdu: Sichuan University

  • [1] Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen. Cathode etching phenomenon of high beam-anode ion source and its elimination measures. Acta Physica Sinica, 2024, 73(18): 185202. doi: 10.7498/aps.73.20240494
    [2] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier. Acta Physica Sinica, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [3] Hua Ying-Xin, Chen Xiao-Hui, Li Jun, Hao Long, Sun Yi, Wang Yu-Feng, Geng Hua-Yun. In situ X-ray diffraction measurement of shock melting in vanadium. Acta Physica Sinica, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [4] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] Chen Xiao-Hui, Tan Bo-Zhong, Xue Tao, Ma Yun-Can, Jin Sai, Li Zhi-Jun, Xin Yue-Feng, Li Xiao-Ya, Li Jun. In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction. Acta Physica Sinica, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [6] Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Physica Sinica, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [7] Zhong Mian, Yang Liang, Ren Wei, Xiang Xia, Liu Xiang, Lian You-Yun, Xu Shi-Zhen, Guo De-Cheng, Zheng Wan-Guo, Yuan Xiao-Dong. Optical properties and laser damage performance of SiO2 irradiated by high-power pulsed electron beam. Acta Physica Sinica, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [8] Xie Chen, Hu Ming-Lie, Xu Zong-Wei, Wu Wei, Gao Hai-Feng, Zhang Da-Peng, Qin Peng, Wang Yi-Sen, Wang Qing-Yue. High power bessel ultrashort pulses directly output from a fiber laser system. Acta Physica Sinica, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [9] Cai Zhao-Bin, Zhao Jian-Lin, Peng Tao, Li Dong. Hot-images induced by the random distribution defects in high power laser systems. Acta Physica Sinica, 2011, 60(11): 114209. doi: 10.7498/aps.60.114209
    [10] Wang You-Wen, Deng Jian-Qin, Wen Shuang-Chun, Tang Zhi-Xiang, Fu Xi-Quan, Fan Dian-Yuan. Experimental study of the nonlinear hot image effect of broadband pulsed laser beams. Acta Physica Sinica, 2009, 58(3): 1738-1744. doi: 10.7498/aps.58.1738
    [11] Feng Ze-Hu, Fu Xi-Quan, Zhang Li-Fu, Xu Hui-Wen, Wen Shuang-Chun. Experimental research of small-scale self-focusing of ultrashort pulse with spatial modulation. Acta Physica Sinica, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [12] Wang You-Wen, Hu Yong-Hua, Wen Shuang-Chun, You Kai-Ming, Fu Xi-Quan. Study of nonlinear hot image effect of Gaussian optical beams. Acta Physica Sinica, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [13] Liu Yan-Ge, Zhang Chun-Shu, Sun Ting-Ting, Lu Yun-Fei, Wang Zhi, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. Clad-pumped Er3+/Yb3+-codoped short pulse fiber laser with high average power output exceeding 2W. Acta Physica Sinica, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [14] Liu Lan-Qin, Peng Han-Sheng, Wei Xiao-Feng, Zhu Qi-Hua, Huang Xiao-Jun, Wang Xiao-Dong, Zhou Kai-Nan, Zeng Xiao-Ming, Wang Xiao, Guo Yi, Yuan Xiao-Dong, Peng Zhi-Tao, Tang Xiao-Dong. Compensation of gain narrowing by using AOPDF in high-power ultra-short pulse laser systems. Acta Physica Sinica, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
    [15] Xie Liang-Ping, Zhao Jian-Lin, Su Jing-Qin, Jing Feng, Wang Wen-Yi, Peng Han-Sheng. Theoretical analysis of hot image effect from phase scatterer. Acta Physica Sinica, 2004, 53(7): 2175-2179. doi: 10.7498/aps.53.2175
    [16] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [17] LU SHI-PING, YUAN YI-QIAN, YANG LI-SHU, WU CUN-KAI. HIGH POWER SUM FREQUENCY GENERATION OF 230.8—223.2nm IN BBO CRYSTAL. Acta Physica Sinica, 1990, 39(2): 190-193. doi: 10.7498/aps.39.190
    [18] SHEN HONG-YUAN, ZHOU YU-PING, YU GUI-FANG, HUANG XIAO-LIANG, WU CAI-MING, NI YU-YUN. INFLUENCE OF THERMAL EFFECTS ON HIGH POWER CW LASER OUTPUT OF b-AXIS Nd: YAP. Acta Physica Sinica, 1982, 31(9): 1235-1242. doi: 10.7498/aps.31.1235
    [19] TU JIN-LIANG, WU YAO-AN, TANG YUAN-FENG, SUN JIN-MEI, FENG LIN-TING, LI JING-LONG, LIAO JING-YING, WU HUI-FA, XU HUI-DE. CRYSTAL GROWTH AND CHARACTERIZATION OF BARIUM SODIUM NIOBATE WITH HIGH SH OUTPUT. Acta Physica Sinica, 1981, 30(11): 1543-1547. doi: 10.7498/aps.30.1543
    [20] WU ZHONG-XIANG. A FORMULA FOR ESTIMATING THE POWER OUTPUT OF A LASER. Acta Physica Sinica, 1979, 28(3): 426-429. doi: 10.7498/aps.28.426
Metrics
  • Abstract views:  2923
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2023
  • Accepted Date:  18 August 2023
  • Available Online:  19 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回
Baidu
map