-
Dirac quantum materials comprise a broad category of condensed matter systems characterized by low-energy excitations described by the Dirac equation. These excitations, which can manifest as either collective states or band structure effects, have been identified in a wide range of systems, from exotic quantum fluids to crystalline materials. Over the past several decades, they have sparked extensive experimental and theoretical investigations in various materials, such as topological insulators and topological semimetals. The study of Dirac quantum materials has also opened up new possibilities for topological quantum computing, giving rise to a burgeoning field of physics and offering a novel platform for realizing rich topological phases, including various quantum Hall effects and topological superconducting phases. Furthermore, the topologically non-trivial band structures of Dirac quantum materials give rise to plentiful intriguing transport phenomena, including longitudinal negative magnetoresistance, quantum interference effects, helical magnetic effects, and others. Currently, numerous transport phenomena in Dirac quantum materials remain poorly understood from a theoretical standpoint, such as linear magnetoresistance in weak fields, anomalous Hall effects in nonmagnetic materials, and three-dimensional quantum Hall effects. Studying these transport properties will not only deepen our understanding of Dirac quantum materials, but also provide important insights for their potential applications in spintronics and quantum computing. In this paper, quantum transport theory and quantum anomaly effects related to the Dirac equation are summarized, with emphasis on massive Dirac fermions and quantum anomalous semimetals. Additionally, the realization of parity anomaly and half-quantized quantum Hall effects in semi-magnetic topological insulators are also put forward. Finally, the key scientific issues of interest in the field of quantum transport theory are reviewed and discussed.
[1] Shen S Q 2017 Topological Insulators (Vol. 187) (2nd Ed.) (Singapore: Springer) pp17–32
[2] Wehling T O, Black S, Annica M, Balatsky A V 2014 Adv. Phys. 63 1
Google Scholar
[3] Volovik G E 2003 The Universe in a Helium Droplet (Oxford: Clarendon Press) pp454–456
[4] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[5] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[6] Sarma S D, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407
Google Scholar
[7] Moore J E 2010 Nature 464 194
Google Scholar
[8] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
Google Scholar
[9] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045
Google Scholar
[10] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001
Google Scholar
[11] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[12] Wang G, Chernikov A, Glazov, M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001
Google Scholar
[13] Fu L 2011 Phys. Rev. Lett. 106 106802
Google Scholar
[14] Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361
Google Scholar
[15] Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001
Google Scholar
[16] Lv B Q, Qian T, Ding H 2021 Rev. Mod. Phys. 93 025002
Google Scholar
[17] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803
Google Scholar
[18] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
Google Scholar
[19] Kane C L, Me le, E J 2005 Phys. Rev. Lett. 95 226801
Google Scholar
[20] Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407
Google Scholar
[21] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004
Google Scholar
[22] Hosur P, Qi X L 2013 CR Phys. 14 857
Google Scholar
[23] Jia S, Xu S Y, Hasan M Z 2016 Nat. Mater. 15 1140
Google Scholar
[24] Lu H Z, Shen S Q 2017 Front. Phys. 12 127201
Google Scholar
[25] Wang S, Lin B C, Wang A Q, Yu D P, Liao Z M 2017 Adv. Phys. X 2 518
Google Scholar
[26] Hu J, Xu S Y, Ni N, Mao Z Q 2019 Annu. Rev. Mater. Res. 49 207
Google Scholar
[27] Culcer D, Keser A C, Li Y, Tkachov G 2020 2D Mater. 7 022007
Google Scholar
[28] Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M, Li L 2013 Phys. Rev. Lett. 111 246603
Google Scholar
[29] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413
Google Scholar
[30] Li H, He H T, Lu H Z, Zhang H C, Liu H C, Ma R, Fan Z Y, Shen S Q, Wang J N 2016 Nat. Commun. 7 10301
Google Scholar
[31] Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137
Google Scholar
[32] Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M 2016 Nat. Commun. 7 10735
Google Scholar
[33] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z 2015 Phys. Rev. X 5 031023
Google Scholar
[34] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A, Zhong R, Schneeloch J, Gu G, Valla T 2016 Nat. Phys. 12 550
Google Scholar
[35] Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J, Ong N P 2018 Phys. Rev. X 8 031002
Google Scholar
[36] Wang J, Li H, Chang C, He K, Lee J S, Lu H, Sun Y, Ma X, Samarth N, Shen S Q 2012 Nano Res. 5 739
Google Scholar
[37] He H T, Liu H C, Li B K, Guo X, Xu Z J, Xie M H, Wang J N 2013 Appl. Phys. Lett. 103 031606
Google Scholar
[38] Assaf B, Phuphachong T, Kampert E, Volobuev V, Mandal P, Sánchez-Barriga J, Rader O, Bauer G, Springholz G, De Vaulchier L 2017 Phys. Rev. Lett. 119 106602
Google Scholar
[39] Wiedmann S, Jost A, Fauqué B, Van Dijk J, Meijer M, Khouri T, Pezzini S, Grauer S, Schreyeck S, Brüne C 2016 Phys. Rev. B 94 081302
Google Scholar
[40] Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C, Chu J H 2019 Sci. Adv. 5 eaav9771
Google Scholar
[41] Nielsen H, Ninomiya M 1983 Phys. Lett. B 130 389
Google Scholar
[42] Son D T, Spivak B Z 2013 Phys. Rev. B 88 104412
Google Scholar
[43] Burkov A A 2014 Phys. Rev. Lett. 113 247203
Google Scholar
[44] Goswami P, Pixley J H, Sarma S D 2015 Phys. Rev. B 92 075205
Google Scholar
[45] Gao Y, Yang S A, Niu Q 2017 Phys. Rev. B 95 165135
Google Scholar
[46] Dai X, Du Z, Lu H Z 2017 Phys. Rev. Lett. 119 166601
Google Scholar
[47] Andreev A V, Spivak B Z 2018 Phys. Rev. Lett. 120 026601
Google Scholar
[48] Wang H W, Fu B, Shen S Q 2018 Phys. Rev. B 98 081202(R
Google Scholar
[49] Fu B, Wang H W, Shen S Q 2020 Phys. Rev. B 101 125203
Google Scholar
[50] Wang H W, Fu B, Shen S Q 2021 Phys. Rev. B 104 L241111
Google Scholar
[51] Gorkov L P, Larkin A I, Khmelnitskii D E 1979 JETP Lett. 30 228
[52] Hikami S, Larkin A I, Nagaoka Y 1980 Prog. Theor. Phys. 63 707
Google Scholar
[53] Chakravarty S, Schmid A 1986 Phys. Rep. 140 193
Google Scholar
[54] Wu X S, Li X B, Song Z M, Berger C, de Heer W A 2007 Phys. Rev. Lett. 98 136801
Google Scholar
[55] Tikhonenko F V, Kozikov A A, Savchenko A K, Gorbachev R V 2009 Phys. Rev. Lett. 103 226801
Google Scholar
[56] Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601
Google Scholar
[57] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L 2010 Phys. Rev. Lett. 105 176602
Google Scholar
[58] He H T, Wang G, Zhang T, Sou I K, Wong G K, Wang J N, Lu H Z, Shen S Q, Zhang F C 2011 Phys. Rev. Lett. 106 166805
Google Scholar
[59] Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438
Google Scholar
[60] Liu M H, Zhang J S, Chang C Z, Zhang Z C, Feng X, Li K, H e, K, Wa ng, L L, Chen X, Dai Xi, Fang Z, Xue Q K, Ma X C, Wang Y Y 2012 Phys. Rev. Lett. 108 036805
Google Scholar
[61] Liu H C, Lu H Z, He H T, Li B K, Liu S G, He Q L, Wang G, S ou, I K, Shen S Q, Wang J N 2014 ACS Nano 8 9616
Google Scholar
[62] Li H, Wang H W, Li Y, Zhang H C, Zhang S, Pan X C, Jia B, Song F Q, Wang J N 2019 Nano Lett. 19 2450
Google Scholar
[63] Tkac V, Vyborny K, Komanicky V, Warmuth J, Michiardi M, Ngankeu A S 2019 Phys. Rev. Lett. 123 036406
Google Scholar
[64] Zhao B, Cheng P H, Pan H Y, Zhang S, Wang B G, Wang G H, Xiu F X, Song F Q 2016 Sci. Rep. 6 22377
Google Scholar
[65] Nakamura H, Huang D, Merz J, Khalaf E, Ostrovsky P, Yaresko A, Samal D, Takagi H 2020 Nat. Commun. 11 1161
Google Scholar
[66] Suzuura H, Ando T 2002 Phys. Rev. Lett. 89 266603
Google Scholar
[67] McCann E, Kechedzhi K, Falko V I, Suzuura H, Ando T, Altshuler B L 2006 Phys. Rev. Lett. 97 146805
Google Scholar
[68] Garate I, Glazman L 2012 Phys. Rev. B 86 035422
Google Scholar
[69] Lu H Z, Shi J R, Shen S Q 2011 Phys. Rev. Lett. 107 076801
Google Scholar
[70] Lu H Z, Shen S Q 2014 Phys. Rev. Lett. 112 146601
Google Scholar
[71] Gornyi I V, Kachorovskii V Y, Ostrovsky P M 2014 Phys. Rev. B 90 085401
Google Scholar
[72] Wang H W, Fu B, Shen S Q 2020 Phys. Rev. Lett. 124 206603
Google Scholar
[73] Lu H Z, Shen S Q 2015 Phys. Rev. B 92 035203
Google Scholar
[74] Dai X, Lu H Z, Shen S Q, Yao H 2016 Phys. Rev. B 93 161110
Google Scholar
[75] Fu B, Wang H W, Shen S Q 2019 Phys. Rev. Lett. 122 246601
Google Scholar
[76] Chen W, Lu H Z, Zilberberg O 2019 Phys. Rev. Lett. 122 196603
Google Scholar
[77] Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197
Google Scholar
[78] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
Google Scholar
[79] Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801
Google Scholar
[80] Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002
Google Scholar
[81] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61
Google Scholar
[82] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L 2013 Science 340 167
Google Scholar
[83] Xu Y, Miotkowski I, Liu C, Tian J F, Nam H, Alidoust N, Hu J N, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956
Google Scholar
[84] Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R 2019 Nature 565 331
Google Scholar
[85] Tang F D, Ren Y F, Wang P P, Zhong R D, Schneeloch J, Yang S Y A, Yang K, Lee P A, Gu G D, Qiao X H, Zhang L Y 2019 Nature 569 537
Google Scholar
[86] Galeski S, Ehmcke T, Wawrzynczak R, Lozano P M, Cho K, Sharma A, Das S 2021 Nat. Commun. 12 3197
Google Scholar
[87] Wang C M, Sun H P, Lu H Z, Xie X C 2017 Phys. Rev. Lett. 119 136806
Google Scholar
[88] Qin F, Li S, Du Z Z, Wang C M, Zhang W Q, Yu D P, Lu H Z, Xie X C 2020 Phys. Rev. Lett. 125 206601
Google Scholar
[89] Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Nagaosa N, Kawasaki M, Tokura Y 2015 Nat. Commun. 6 8530
Google Scholar
[90] Zhang S, Pi L, Wang R, Yu G, Pan X C, Wei Z, Zhang J, Xi C, Bai Z 2017 Nat. Commun. 8 977
Google Scholar
[91] Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yoshimi K, Tsukazaki A, Takahashi K S 2022 Nat. Phys. 18 390
Google Scholar
[92] Liang T, Lin J J, Gibson Q, Kushwaha S, Liu M H, Wang W D, Xiong H Y, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J, Ong N P 2018 Nat. Phys. 14 451
Google Scholar
[93] Sun Z, Cao Z, Cui J, Zhu C, Ma D, Wang H, Zhuo W, Cheng Z, Wang Z, Wan X, Chen X H 2020 Npj Quantum Mater. 5 36
Google Scholar
[94] Liu Y Z, Wang H C, Fu H X, et al. 2021 Phys. Rev. B 103 L201110
Google Scholar
[95] Mutch J, Ma X, Wang C, Malinowski P, AyresSims J, Jiang Q, Liu Z, Xiao D, Yankowitz M, Chu J H 2021 arXiv: 2101.02681 [cond-mat]
[96] Gourgout A, Leroux M, Smirr J L, et al. 2022 npj Quantum Mater. 7 71
Google Scholar
[97] Lozano P M, Cardoso G, Aryal N, Nevola D, Gu G, Tsvelik A, Yin W, Li Q 2022 Phys. Rev. B 106 L081124
Google Scholar
[98] Burkov A A 2017 Phys. Rev. B 96 041110
Google Scholar
[99] Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804
Google Scholar
[100] Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A, Ando Y 2017 Nat. Commun. 8 1340
Google Scholar
[101] Li H, Wang H W, He H T, Wang J N, Shen S Q 2018 Phys. Rev. B 97 201110
Google Scholar
[102] Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W, Tian M L 2018 Phys. Rev. B 98 161110
Google Scholar
[103] Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103
Google Scholar
[104] Li P, Zhang C H, Zhang J W, Wen Y, Zhang X X 2018 Phys. Rev. B 98 121108(R
Google Scholar
[105] Huang D, Nakamura H, Takagi H 2021 Phys. Rev. Research 3 013268
Google Scholar
[106] Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X D, Zhou J H, Ning W, Tian M L 2022 Nano Lett. 22 73
Google Scholar
[107] Zhong J Y, Zhuang J C, Du Y 2023 Chin. Phys. B 32 047203
Google Scholar
[108] Gao A Y, Liu Y F, Hu C W, Qiu J X, Tzschaschel C, Ghosh B, Ho S C 2021 Nature 595 521
Google Scholar
[109] Chen R, Sun H P, Gu M Q, Hua C B, Liu Q H, Lu H Z, Xie X C 2022 Natl. Sci. Rev. nwac140
Google Scholar
[110] Zhai D W, Chen C, Xiao C, Yao W 2023 Nat. Commun. 14 1961
Google Scholar
[111] Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821
Google Scholar
[112] Wang X, Du Y, Dou S, Zhang C 2012 Phys. Rev. Lett. 108 266806
Google Scholar
[113] Zhang G, Qin H, Chen J, He X, Lu L, Li Y, Wu K 2011 Adv. Funct. Mater. 21 2351
[114] Tang H, Liang D, Qiu R L J, Gao X P A 2011 ACS Nano 5 7510
Google Scholar
[115] He H, Li B, Liu H, Guo X, Wang Z, Xie M, Wang J 2012 Appl. Phys. Lett. 100 032105
Google Scholar
[116] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J, Li S Y 2014 Phys. Rev. Lett. 113 246402
Google Scholar
[117] Liang T, Gibson Q, Ali M N, Liu M, Cava R J, Ong N P 2015 Nat. Mater. 14 280
Google Scholar
[118] Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C, Kong T, Canfield P C, Coldea A I 2015 Phys. Rev. Lett. 114 117201
Google Scholar
[119] Feng J, Pang Y, Wu D, Wang Z J, Weng H M, Li J, Dai X, Fang Z, Shi Y, Lu L 2015 Phys. Rev. B 92 081306(R
Google Scholar
[120] Tian Y, Ghassemi N, Jr J H R 2021 Phys. Rev. Lett. 126 236401
Google Scholar
[121] Fu B, Wang H W, Shen S Q 2020 Phys. Rev. Lett. 125 256601
Google Scholar
[122] Fu B, Zou J Y, Hu Z A, Wang H W, Shen S Q 2022 npj Quantum Mater. 7 94
Google Scholar
[123] Zou J Y, Fu B, Wang H W, Hu Z A, Shen S Q 2022 Phys. Rev. B 105 L201106
Google Scholar
[124] Zou J Y, Chen R, Fu B, Wang H W, Hu Z A, Shen S Q 2023 Phys. Rev. B 107 125153
Google Scholar
[125] Wang H W, Fu B, Zou J Y, Hu Z A, Shen S Q 2022 Phys. Rev. B 106 045111
Google Scholar
[126] Shen S Q, Bao Y J, Ma M, Xie X C, Zhang F C 2005 Phys. Rev. B 71 155316
Google Scholar
[127] Bjorken J D, Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill Inc.) pp45–60
[128] Shen S Q, Shan W Y, Lu H Z 2011 SPIN 01 33
Google Scholar
[129] Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494
Google Scholar
[130] Klitzing K v, Chakraborty T, Kim P, Madhavan V, Dai X, McIver J, Tokura Y, Savary L, Smirnova D, Rey A M, Felser C, Gooth J, Qi X L 2020 Nat. Rev. Phys. 2 397
Google Scholar
[131] Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125
Google Scholar
[132] Yang B J, Nagaosa N 2014 Nat. Commun. 5 4898
Google Scholar
[133] Wilson K G 1975 New Phenomena in Subnuclear Physics (New York: Plenum) pp69–142
[134] Rothe H J 2005 Lattice Gauge Theories: An Introduction (3rd Ed.) (Singapore: World Scientific) pp56–57
[135] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J 2017 Nat. Commun. 8 15512
Google Scholar
[136] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438
Google Scholar
[137] Xia Y Q, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398
Google Scholar
[138] Zee A 2010 Quantum Field Theory in a Nutshell (Vol. 7) (Princeton: Princeton University Press) pp99–100
[139] Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C, Wang Y Y 2011 Phys. Rev. B 83 165440
Google Scholar
[140] Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedl K J 2012 Phys. Rev. B 85 115314
Google Scholar
[141] Jing Y M, Huang S Y, Zhang K, Wu J X, Guo Y F, Peng H L, Liu Z F, Xu H Q 2016 Nanoscale 8 1879
Google Scholar
[142] Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288
Google Scholar
[143] Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
Google Scholar
[144] Liu Q, Liu C X, Xu C K, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603
Google Scholar
[145] Chen Y L, C hu, J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H 2010 Science 329 659
Google Scholar
[146] Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126
Google Scholar
[147] Okada S, Sambongi T, Ido M 1980 J. Phys. Soc. Jpn. 49 839
Google Scholar
[148] Izumi M, Uchinokura K, Matsuura E 1981 Solid State Commun. 37 641
Google Scholar
[149] DiSalvo F, Fleming R, Waszczak J 1981 Phys. Rev. B 24 2935
Google Scholar
[150] Okada S, Sambongi T, Ido M, Tazuke Y, Aoki R, Fujita O 1982 J. Phys. Soc. Jpn. 51 460
Google Scholar
[151] Bullett D 1982 Solid State Commun. 42 691
Google Scholar
[152] Fjellvag H, Kjekshus A 1986 Solid State Commun. 60 91
Google Scholar
[153] Chen Z G, Chen R, Zhong R, Schneeloch J, Zhang C, Huang Y, Qu F, Yu R, Li Q, Gu G, Wang N 2017 Proc. Natl. Acad. Sci. U.S.A. 114 816
Google Scholar
[154] Manzoni G, Gragnaniello L, AutASs G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V 2016 Phys. Rev. Lett. 117 237601
Google Scholar
[155] Zhang J L, Wang C M, Guo C Y, Zhu X D, Zhang Y, Yang J Y, Wang Y Q, Qu Z, Pi L, Lu H Z, Tian M L 2019 Phys. Rev. Lett. 123 196602
Google Scholar
[156] Jiang Y, Wang J, Zhao T, Dun Z L, Huang Q, Wu X S, Mourigal M, Zhou H D, Pan W, Ozerov M, Smirnov D, Jiang Z 2020 Phys. Rev. Lett. 125 046403
Google Scholar
[157] Wang P, Ren Y, Tang F, Wang P, Hou T, Zeng H, Zhang L, Qiao Z H 2020 Phys. Rev. B 101 161201
Google Scholar
[158] Zhao L X, Huang X C, Long Y J, Chen D, Liang H, Yang Z H, Xue M Q, Ren Z A, Weng H M, Fang Z, Dai X, Chen G F 2017 Chin. Phys. Lett. 34 037102
Google Scholar
[159] Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055
Google Scholar
[160] Xu B, Zhao L, Marsik P, Sheveleva E, Lyzwa F, Dai Y, Chen G, Qiu X, Bernhard C 2018 Phys. Rev. Lett. 121 187401
Google Scholar
[161] Wang C J 2021 Phys. Rev. Lett. 126 126601
Google Scholar
[162] Wang Y G, Legg H F, Bömerich T, Park J, Biesenkamp S, Taskin A A, Braden M, Rosch A, Ando Y 2022 Phys. Rev. Lett. 128 176602
Google Scholar
[163] Zhang Y, Wang C, Liu G, Liang A, Zhao L, Huang J, Gao Q, Shen B 2017 Sci. Bull. 62 950
Google Scholar
[164] Adler S L 1969 Phys. Rev. 177 2426
Google Scholar
[165] Bell J S, Jackiw R 1969 Nuovo Cimento A 60 47
Google Scholar
[166] Fujikawa K 1979 Phys. Rev. Lett. 42 1195
Google Scholar
[167] Peskin M E, Schroeder D V 1995 An Introduction to Quantum Field Theory (Cambridge: Perseus Books Publishing LLC) pp651–667
[168] Weinberg S 1995 The Quantum Theory of Fields (Vol. 2) (Cambridge: Cambridge University Press) pp473–485
[169] Dirac P A M 1958 The Principles of Quantum Mechanics (New York: Oxford University Press Inc.) pp253–267
[170] Jackiw R, Johnson K 1969 Phys. Rev. 182 1459
Google Scholar
[171] Kharzeev D E, Kikuchi Y, Meyer R, Tanizaki Y 2018 Phys. Rev. B 98 014305
Google Scholar
[172] Yamamoto N, Yang D L 2021 Phys. Rev. D 103 125003
Google Scholar
[173] Vilenkin A 1980 Phys. Rev. D 22 3080
Google Scholar
[174] Fukushima K, Fukushima D E, Warringa H J 2008 Phys. Rev. D 78 074033
Google Scholar
[175] Huang Z M, Zhou J H, Shen S Q 2017 Phys. Rev. B 96 085201
Google Scholar
[176] Lu H Z, Zhang S B, Shen S Q 2015 Phys. Rev. B 92 045203
Google Scholar
[177] Zhang S B, Lu H Z, Shen S Q 2016 New J. Phys. 18 053039
Google Scholar
[178] Klier J, Gornyi I V, Mirlin A D 2017 Phys. Rev. B 96 214209
Google Scholar
[179] Niemi A J, Semenoff G W 1983 Phys. Rev. Lett. 51 2077
Google Scholar
[180] Redlich A N 1984 Phys. Rev. Lett. 52 18
Google Scholar
[181] Jackiw R 1984 Phys. Rev. D 29 2375
Google Scholar
[182] Boyanovsky D, Blankenbecler R, Yahalom R 1986 Nucl. Phys. B 270 483
Google Scholar
[183] Schakel A M J 1991 Phys. Rev. D 43 1428
Google Scholar
[184] Chu R L, Shi J R, Shen S Q 2011 Phys. Rev. B 84 085312
Google Scholar
[185] Lapa M F 2019 Phys. Rev. B 99 235144
Google Scholar
[186] Lu R, Sun H, Kumar S, Wang Y, Gu M, Zeng M, Hao Y J, Li J 2021 Phys. Rev. X 11 011039
Google Scholar
[187] Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
Google Scholar
[188] Sitte M, Rosch A, Altman E, Fritz L 2012 Phys. Rev. Lett. 108 126807
Google Scholar
[189] Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107
Google Scholar
[190] Gu M, Li J, Sun H, Zhao Y, Liu C, Liu J, Lu H, Liu Q 2021 Nat. Commun. 12 3524
Google Scholar
[191] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516
Google Scholar
[192] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669
Google Scholar
[193] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801
Google Scholar
[194] Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401
Google Scholar
[195] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mat. 19 522
Google Scholar
[196] Wilczek F 1987 Phys. Rev. Lett. 58 1799
Google Scholar
[197] Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424
Google Scholar
[198] Spaldin N A, Fiebig M 2005 Science 309 391
Google Scholar
[199] Fiebig M 2005 J. Phys. D 38 R123
Google Scholar
[200] Maciejko J, Qi X L, Drew H D, Zhang S C 2010 Phys. Rev. Lett. 105 166803
Google Scholar
[201] Tse W K, MacDonald A H 2011 Phys. Rev. B 84 205327
Google Scholar
[202] Li R, Wang J, Qi X L, Zhang S C 2010 Nat. Phys. 6 284
Google Scholar
[203] Sekine A, Nomura K 2014 J Phys. Soc. Jpn. 83 104709
Google Scholar
[204] Sekine A, Nomura K 2021 J. Appl. Phys. 129 141101
Google Scholar
[205] Shoron O F, Kealhofer D A, Goyal M, Schumann T, Burkov A A, Stemmer S 2021 Appl. Phys. Lett. 119 171907
Google Scholar
[206] Abrikosov A A 1998 Phys. Rev. B 58 2788
Google Scholar
[207] Parish M M, Littlewood P B 2003 Nature 426 162
Google Scholar
[208] Parish M M, Littlewood P B 2005 Phys. Rev. B 72 094417
Google Scholar
[209] Cao H, Tian J, Miotkowski I, Shen T, Hu J, Qiao S, Chen Y P 2012 Phys. Rev. Lett. 108 216803
Google Scholar
[210] Wang C M, Lei X L 2012 Phys. Rev. B 86 035442
Google Scholar
[211] Avron J E, Seiler R, Simon B 1983 Phys. Rev. Lett. 51 51
Google Scholar
[212] Halperin B I 1987 Jpn. J. Appl. Phys. 26 1913
Google Scholar
[213] Zhao P L, Lu H Z, Xie X C 2021 Phys. Rev. Lett. 127 046602
Google Scholar
[214] Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539
Google Scholar
[215] Chen R, Shen S Q 2023 arXiv: 2304.04229 [cond-mat]
[216] Zhou H M, Li H L, Xu D H, Chen C Z, Sun Q F, Xie X C 2022 Phys. Rev. Lett. 129 096601
Google Scholar
[217] Gong M, Liu H W, Jiang H, Chen C Z, Xie X C 2023 Natl. Sci. Rev 10 nwad025
Google Scholar
[218] Goos F, Hanchen H 1947 Ann. Phys. 436 333
Google Scholar
-
图 1 有质量狄拉克费米子的内禀磁阻 (a)有质量狄拉克费米子的横向磁阻和纵向磁阻, 其中纵向磁阻为负, 横向磁阻为正; (b)无量纲系数随能带展宽的变化关系,
$c_\alpha$ 在弱散射下趋于一个常数. 转载自文献[48]Figure 1. Intrinsic Magnetoresistivity in massive Dirac fermion: (a) Transversal and longitudinal magnetoresistivity, where the longitudinal one is negative and transversal one is positive; (b) dimensionless parameter
$c_\alpha$ as functions of band broadening, here$c_\alpha$ tends to a constant in weak scattering. Reproduced with permission from Ref. [48]图 2 Mn掺杂的拓扑绝缘体薄膜中磁导在不同磁场强度下的温度依赖行为, 其中(a)
$x_{\mathrm{Mn}} = 0{\text{%}}$ 和(b)$x_{\mathrm{Mn}} = 8{\text{%}}$ . 图中的空心方块是从文献[63]中获得的实验数据, 实线是(25)式在不同磁场下的拟合结果. 转载自文献[72]Figure 2. Magnetoconductivity as a function of temperature at different magnetic field strength for two Mn-doped topological insulator thin films of (a)
$x_{{\rm{Mn}}} = 0{\text{%}}$ and (b)$x_{{\rm{Mn}}} = 8{\text{%}}$ . The open squares are the experimental data extract from Ref. [63]. The solid red lines are the fitting results at different magnetic filed B by using the formula in Eq. (25). Reproduced with permission from Ref. [72]图 3 库珀子能隙和权重因子关于能量的函数关系, 其中(a) 拓扑绝缘体
$(mb>0)$ , (b) 平庸绝缘体$(mb<0)$ , (c)半金属($mb=0$ ).$F_\mathrm{tot}=\displaystyle\sum\nolimits_i F_i$ 是总的权重因子. 转载自文献[75]Figure 3. Dimensionless Cooperon gap
$\ell_e^2/\ell_i^2$ and weighting factor$F_i$ as a function of the Fermi energy$\mu$ for (a) topological insulator ($mb>0$ ), (b) trivial insulator ($mb<0$ ), and (c) Dirac semimetal ($mb=0$ ).$F_\mathrm{tot}$ is the total weighting factors defined as$F_\mathrm{tot}=\displaystyle\sum\nolimits_i F_i$ . Reproduced with permission from Ref. [75]图 4 (a) (27)式对实验中Cd2As3样品[64]相对纵向磁阻的理论拟合; (b) 拟合得到的相干长度关于温度的函数, 可以被
$\ell_{\phi}\propto T^{-0.75}$ 很好地拟合; (c)不同磁场强度下的相对磁阻关于温度的函数. 转载自文献[75]Figure 4. Theoretical fitting to the relative longitudinal magnetoresistance in a
$\mathrm{Cd}_{2}\mathrm{As}_{3}$ sample[64]; (b) fitted phase coherence length$\ell_\phi$ as a function of temperatures (open squares), which can be well-fitted by$\ell_{\phi}\propto T^{-0.75}$ ; (c) measured relative magnetoresistance as a function of temperatures at$B=1, 2, 3\;\mathrm{T}$ . Reproduced with permission from Ref. [75]图 5 ZrTe5和HfTe5电阻反常效应 (a)关于ZrTe5温度依赖的能谱在实验 (根据文献中ARPES测量得到) 和理论 (实线) 上的比较, 随着温度升高, 化学势由导带变化至价带; (b)—(d) 分别为不同载流子浓度下计算得到的电阻反常行为、霍尔系数和塞贝克系数. 转载自文献[121]
Figure 5. Resistivity anomaly in ZrTe5 and HfTe5: (a) Comparison of experimental (according to the ARPES measurements in literature) and theoretical (solid lines) temperature-dependent energy spectrum. The chemical potential varies from valence band to conduction band with the increasing of temperature. (b)–(d) The resistivity anomaly, Hall coefficients, and Seebeck coefficient for several different carrier concentrations. Reproduced with permission from Ref. [121]
图 6 不同温度下的(a)横向电阻, (b)霍尔电阻, (c)塞贝克系数和(d)能斯特系数的磁场依赖. 转载自文献[121]
Figure 6. Magnetic field dependence of (a) the transverse magnetoresistance
$\rho_xx$ , (b) the Hall resistivity$\rho_{xy}$ , (c) the Seebeck coefficient and (d) the Nernst coefficient for different temperatures. Reproduced with permission from Ref. [121]图 8 宇称反常半金属示意图 (a) Haldane模型: 无质量和有质量的狄拉克锥在动量空间分开; (b)三维半磁性拓扑绝缘体: 无质量和有质量的狄拉克锥在实空间分开; (c)宇称反常半金属中低能电子态的分布以及幂律衰减的边界流. 转载自文献[123]
Figure 8. Illustration of parity anomaly semimetals: (a) Haldane model where massive and massless Dirac cone separated in momentum space; (b) semi-magnetic 3D topological insulator in which a massive and a massless Dirac cone separated in position space; (c) distribution of a set of low energy states and the power law decay edge current in the parity anomalous semimetal for open boundary condition. Reproduced with permission from Ref. [123]
图 9 (a)关于磁化强度和体拓扑磁电效应关系的示意图, 外加电场产生了表面电流和磁化强度; (b)沿着x方向的局域电流密度关于位置z的函数; (c)轴子角
$\theta$ 关于位置z的函数关系. 这里电场沿着y方向. 转载自文献[125]Figure 9. (a) Schematic diagram of the relation between magnetization and bulk topological magnetoelectric effect. A surface current is produced by an electric field due to the magnetization. (b) Local current density along the x–direction as a function of slab position z. (c) Spatial dependent
$\theta$ along the z direction. The electric field is applied along the y-direction. Reproduced with permission from Ref. [125]图 10
${\cal{F}}(x)$ 关于x的函数关系, 其中蓝色虚线表示$ \mathcal{F}(x)= 1 $ 的位置. 插图是$x\leqslant3$ 的函数曲线, 绿色虚线是$x\to0$ 下的线性拟合${\cal{F}}(x)={x}/{2}$ Figure 10. Function relation between
${\cal{F}}(x)$ and x, the dashed blue line indicates the position of$ \mathcal{F}(x)=1 $ . Insert is the function curve for$x\leqslant3$ , the dashed green line is the linear fitting with${\cal{F}}(x)={x}/{2}$ for$x\to0$ 表 1 狄拉克哈密顿量中利用狄拉克伽马矩阵表示的16个物理量及无序根据时间反演(
${\cal{T}}$ )、宇称(${\cal{I}}$ )以及手性对称性(${\cal{C}}$ )的分类. 转载自文献[49]Table 1. Various types of physical quantities and disorder represented by fermionic bilinears (
$i = 1, $ $ 2, 3$ ), their symmetries under time-reversal (${\cal{T}}$ ), parity (${\cal{I}}$ ), and continuous chiral rotation (${\cal{C}}$ ). Reproduced with permission from Ref. [49]Bilinear
($\hat{\cal{S} }_{\mathtt{A} }\propto\bar{\varPsi}{\boldsymbol{\gamma}}^{\mathtt{A} }\varPsi$)Physical quantity ${\cal{T}}$ ${\cal{I}}$ ${\cal{C}}$ Disorder $\bar{\varPsi}{\boldsymbol{\gamma}}^{0}\varPsi$ Total charge $(J^{0})$ $\checkmark$ $\checkmark$ $\checkmark$ $\varDelta$ $\bar{\varPsi}{\boldsymbol{\gamma}}^{0}{\boldsymbol{\gamma}}^{5}\varPsi$ Axial charge $(J^{a0})$ $\checkmark$ $\times$ $\checkmark$ $\varDelta_{{\rm{a}}}$ $\bar{\varPsi}\varPsi$ Scalar mass $({n}_{\beta})$ $\checkmark$ $\checkmark$ $\times$ $\varDelta_{{\rm{m}}}$ $\bar{\varPsi}{\rm{i}}{\boldsymbol{\gamma}}^{5}\varPsi$ Pseudo-scalar density $({n}_{{\rm{P}}})$ $\times$ $\times$ $\times$ $\varDelta_{{\rm{P}}}$ $\bar{\varPsi}{\boldsymbol{\gamma}}^{i}\varPsi$ Current $(J^{i})$ $\times$ $\times$ $\checkmark$ $\varDelta_{{\rm{c}}}$ $\bar{\varPsi}\gamma^{i}\gamma^{5}\varPsi$ Axial current $(J^{ai})$ $\times$ $\checkmark$ $\checkmark$ $\varDelta_{{\rm{ac}}}$ $\bar{\varPsi}{\rm{i}}{\boldsymbol{\gamma}}^{0}{\boldsymbol{\gamma}}^{i}\varPsi$ Electric
polarization $({p}_{i})$$\checkmark$ $\times$ $\times$ $\varDelta_{{\rm{p}}}$ $\bar{\varPsi }{\boldsymbol{\gamma}}^{5}{\boldsymbol{\gamma} }^{0}{\boldsymbol{\gamma} }^{i}\varPsi$ Magnetization $({m}_{i})$ $\times$ $\checkmark$ $\times$ $\varDelta_{{\rm{M}}}$ 表 2 4个库珀子通道
$i = s, t_{0, \pm}$ 的库珀子能隙(以$ \ell_{e}^{-2} $ 为单位)和权重因子, 其中$\eta = mv^2/\mu$ 是狄拉克费米子的自旋极化. 转载自文献[72]Table 2. Components of four Cooperon channels
$i = s, t_{0, \pm}$ in the basis of spin-triplet and singlet$|s, s_{z}\rangle$ , the Cooperon gap$\ell_{i}^{-2}$ in unit of the mean free path$\ell_{{\rm{e}}}^{-2}$ and the weighting factors$w_{i}$ , where$\eta = mv^2/\mu$ is the orbital polarization of Dirac fermion. Reproduced with permission from Ref. [72]i Cooperon in $|s, s_z\rangle$ $w_i$ $\ell_{\rm{e}}^2/\ell_i^2$ s $|0, 0\rangle$ $-\dfrac{(1-\eta^{2})^{2}}{2(1+3\eta^{2})^{2}}$ $\dfrac{(1-\eta^{2})\eta^{2}}{(1+\eta^{2})^{2}}$ $t_{+}$ $|1, 1\rangle$ $\dfrac{4\eta^{2}(1+\eta^{2})}{(1+3\eta^{2})^{2}}$ $\dfrac{4(1-\eta)^{2}\eta^{2}}{(1+3\eta^{2})(1+\eta)^{2}}$ $t_{0}$ $|1, 0\rangle$ 0 $\infty$ $t_{-}$ $|1, -1\rangle$ $\dfrac{4\eta^{2}(1+\eta^{2})}{(1+3\eta^{2})^{2}}$ $\dfrac{4(1+\eta)^{2}\eta^{2}}{(1+3\eta^{2})(1-\eta)^{2}}$ -
[1] Shen S Q 2017 Topological Insulators (Vol. 187) (2nd Ed.) (Singapore: Springer) pp17–32
[2] Wehling T O, Black S, Annica M, Balatsky A V 2014 Adv. Phys. 63 1
Google Scholar
[3] Volovik G E 2003 The Universe in a Helium Droplet (Oxford: Clarendon Press) pp454–456
[4] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[5] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[6] Sarma S D, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407
Google Scholar
[7] Moore J E 2010 Nature 464 194
Google Scholar
[8] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
Google Scholar
[9] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045
Google Scholar
[10] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001
Google Scholar
[11] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[12] Wang G, Chernikov A, Glazov, M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001
Google Scholar
[13] Fu L 2011 Phys. Rev. Lett. 106 106802
Google Scholar
[14] Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361
Google Scholar
[15] Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001
Google Scholar
[16] Lv B Q, Qian T, Ding H 2021 Rev. Mod. Phys. 93 025002
Google Scholar
[17] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803
Google Scholar
[18] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
Google Scholar
[19] Kane C L, Me le, E J 2005 Phys. Rev. Lett. 95 226801
Google Scholar
[20] Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407
Google Scholar
[21] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004
Google Scholar
[22] Hosur P, Qi X L 2013 CR Phys. 14 857
Google Scholar
[23] Jia S, Xu S Y, Hasan M Z 2016 Nat. Mater. 15 1140
Google Scholar
[24] Lu H Z, Shen S Q 2017 Front. Phys. 12 127201
Google Scholar
[25] Wang S, Lin B C, Wang A Q, Yu D P, Liao Z M 2017 Adv. Phys. X 2 518
Google Scholar
[26] Hu J, Xu S Y, Ni N, Mao Z Q 2019 Annu. Rev. Mater. Res. 49 207
Google Scholar
[27] Culcer D, Keser A C, Li Y, Tkachov G 2020 2D Mater. 7 022007
Google Scholar
[28] Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M, Li L 2013 Phys. Rev. Lett. 111 246603
Google Scholar
[29] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413
Google Scholar
[30] Li H, He H T, Lu H Z, Zhang H C, Liu H C, Ma R, Fan Z Y, Shen S Q, Wang J N 2016 Nat. Commun. 7 10301
Google Scholar
[31] Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137
Google Scholar
[32] Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M 2016 Nat. Commun. 7 10735
Google Scholar
[33] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z 2015 Phys. Rev. X 5 031023
Google Scholar
[34] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A, Zhong R, Schneeloch J, Gu G, Valla T 2016 Nat. Phys. 12 550
Google Scholar
[35] Liang S, Lin J, Kushwaha S, Xing J, Ni N, Cava R J, Ong N P 2018 Phys. Rev. X 8 031002
Google Scholar
[36] Wang J, Li H, Chang C, He K, Lee J S, Lu H, Sun Y, Ma X, Samarth N, Shen S Q 2012 Nano Res. 5 739
Google Scholar
[37] He H T, Liu H C, Li B K, Guo X, Xu Z J, Xie M H, Wang J N 2013 Appl. Phys. Lett. 103 031606
Google Scholar
[38] Assaf B, Phuphachong T, Kampert E, Volobuev V, Mandal P, Sánchez-Barriga J, Rader O, Bauer G, Springholz G, De Vaulchier L 2017 Phys. Rev. Lett. 119 106602
Google Scholar
[39] Wiedmann S, Jost A, Fauqué B, Van Dijk J, Meijer M, Khouri T, Pezzini S, Grauer S, Schreyeck S, Brüne C 2016 Phys. Rev. B 94 081302
Google Scholar
[40] Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C, Chu J H 2019 Sci. Adv. 5 eaav9771
Google Scholar
[41] Nielsen H, Ninomiya M 1983 Phys. Lett. B 130 389
Google Scholar
[42] Son D T, Spivak B Z 2013 Phys. Rev. B 88 104412
Google Scholar
[43] Burkov A A 2014 Phys. Rev. Lett. 113 247203
Google Scholar
[44] Goswami P, Pixley J H, Sarma S D 2015 Phys. Rev. B 92 075205
Google Scholar
[45] Gao Y, Yang S A, Niu Q 2017 Phys. Rev. B 95 165135
Google Scholar
[46] Dai X, Du Z, Lu H Z 2017 Phys. Rev. Lett. 119 166601
Google Scholar
[47] Andreev A V, Spivak B Z 2018 Phys. Rev. Lett. 120 026601
Google Scholar
[48] Wang H W, Fu B, Shen S Q 2018 Phys. Rev. B 98 081202(R
Google Scholar
[49] Fu B, Wang H W, Shen S Q 2020 Phys. Rev. B 101 125203
Google Scholar
[50] Wang H W, Fu B, Shen S Q 2021 Phys. Rev. B 104 L241111
Google Scholar
[51] Gorkov L P, Larkin A I, Khmelnitskii D E 1979 JETP Lett. 30 228
[52] Hikami S, Larkin A I, Nagaoka Y 1980 Prog. Theor. Phys. 63 707
Google Scholar
[53] Chakravarty S, Schmid A 1986 Phys. Rep. 140 193
Google Scholar
[54] Wu X S, Li X B, Song Z M, Berger C, de Heer W A 2007 Phys. Rev. Lett. 98 136801
Google Scholar
[55] Tikhonenko F V, Kozikov A A, Savchenko A K, Gorbachev R V 2009 Phys. Rev. Lett. 103 226801
Google Scholar
[56] Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601
Google Scholar
[57] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L 2010 Phys. Rev. Lett. 105 176602
Google Scholar
[58] He H T, Wang G, Zhang T, Sou I K, Wong G K, Wang J N, Lu H Z, Shen S Q, Zhang F C 2011 Phys. Rev. Lett. 106 166805
Google Scholar
[59] Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438
Google Scholar
[60] Liu M H, Zhang J S, Chang C Z, Zhang Z C, Feng X, Li K, H e, K, Wa ng, L L, Chen X, Dai Xi, Fang Z, Xue Q K, Ma X C, Wang Y Y 2012 Phys. Rev. Lett. 108 036805
Google Scholar
[61] Liu H C, Lu H Z, He H T, Li B K, Liu S G, He Q L, Wang G, S ou, I K, Shen S Q, Wang J N 2014 ACS Nano 8 9616
Google Scholar
[62] Li H, Wang H W, Li Y, Zhang H C, Zhang S, Pan X C, Jia B, Song F Q, Wang J N 2019 Nano Lett. 19 2450
Google Scholar
[63] Tkac V, Vyborny K, Komanicky V, Warmuth J, Michiardi M, Ngankeu A S 2019 Phys. Rev. Lett. 123 036406
Google Scholar
[64] Zhao B, Cheng P H, Pan H Y, Zhang S, Wang B G, Wang G H, Xiu F X, Song F Q 2016 Sci. Rep. 6 22377
Google Scholar
[65] Nakamura H, Huang D, Merz J, Khalaf E, Ostrovsky P, Yaresko A, Samal D, Takagi H 2020 Nat. Commun. 11 1161
Google Scholar
[66] Suzuura H, Ando T 2002 Phys. Rev. Lett. 89 266603
Google Scholar
[67] McCann E, Kechedzhi K, Falko V I, Suzuura H, Ando T, Altshuler B L 2006 Phys. Rev. Lett. 97 146805
Google Scholar
[68] Garate I, Glazman L 2012 Phys. Rev. B 86 035422
Google Scholar
[69] Lu H Z, Shi J R, Shen S Q 2011 Phys. Rev. Lett. 107 076801
Google Scholar
[70] Lu H Z, Shen S Q 2014 Phys. Rev. Lett. 112 146601
Google Scholar
[71] Gornyi I V, Kachorovskii V Y, Ostrovsky P M 2014 Phys. Rev. B 90 085401
Google Scholar
[72] Wang H W, Fu B, Shen S Q 2020 Phys. Rev. Lett. 124 206603
Google Scholar
[73] Lu H Z, Shen S Q 2015 Phys. Rev. B 92 035203
Google Scholar
[74] Dai X, Lu H Z, Shen S Q, Yao H 2016 Phys. Rev. B 93 161110
Google Scholar
[75] Fu B, Wang H W, Shen S Q 2019 Phys. Rev. Lett. 122 246601
Google Scholar
[76] Chen W, Lu H Z, Zilberberg O 2019 Phys. Rev. Lett. 122 196603
Google Scholar
[77] Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197
Google Scholar
[78] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
Google Scholar
[79] Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801
Google Scholar
[80] Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002
Google Scholar
[81] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61
Google Scholar
[82] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L 2013 Science 340 167
Google Scholar
[83] Xu Y, Miotkowski I, Liu C, Tian J F, Nam H, Alidoust N, Hu J N, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956
Google Scholar
[84] Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R 2019 Nature 565 331
Google Scholar
[85] Tang F D, Ren Y F, Wang P P, Zhong R D, Schneeloch J, Yang S Y A, Yang K, Lee P A, Gu G D, Qiao X H, Zhang L Y 2019 Nature 569 537
Google Scholar
[86] Galeski S, Ehmcke T, Wawrzynczak R, Lozano P M, Cho K, Sharma A, Das S 2021 Nat. Commun. 12 3197
Google Scholar
[87] Wang C M, Sun H P, Lu H Z, Xie X C 2017 Phys. Rev. Lett. 119 136806
Google Scholar
[88] Qin F, Li S, Du Z Z, Wang C M, Zhang W Q, Yu D P, Lu H Z, Xie X C 2020 Phys. Rev. Lett. 125 206601
Google Scholar
[89] Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Nagaosa N, Kawasaki M, Tokura Y 2015 Nat. Commun. 6 8530
Google Scholar
[90] Zhang S, Pi L, Wang R, Yu G, Pan X C, Wei Z, Zhang J, Xi C, Bai Z 2017 Nat. Commun. 8 977
Google Scholar
[91] Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yoshimi K, Tsukazaki A, Takahashi K S 2022 Nat. Phys. 18 390
Google Scholar
[92] Liang T, Lin J J, Gibson Q, Kushwaha S, Liu M H, Wang W D, Xiong H Y, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J, Ong N P 2018 Nat. Phys. 14 451
Google Scholar
[93] Sun Z, Cao Z, Cui J, Zhu C, Ma D, Wang H, Zhuo W, Cheng Z, Wang Z, Wan X, Chen X H 2020 Npj Quantum Mater. 5 36
Google Scholar
[94] Liu Y Z, Wang H C, Fu H X, et al. 2021 Phys. Rev. B 103 L201110
Google Scholar
[95] Mutch J, Ma X, Wang C, Malinowski P, AyresSims J, Jiang Q, Liu Z, Xiao D, Yankowitz M, Chu J H 2021 arXiv: 2101.02681 [cond-mat]
[96] Gourgout A, Leroux M, Smirr J L, et al. 2022 npj Quantum Mater. 7 71
Google Scholar
[97] Lozano P M, Cardoso G, Aryal N, Nevola D, Gu G, Tsvelik A, Yin W, Li Q 2022 Phys. Rev. B 106 L081124
Google Scholar
[98] Burkov A A 2017 Phys. Rev. B 96 041110
Google Scholar
[99] Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804
Google Scholar
[100] Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A, Ando Y 2017 Nat. Commun. 8 1340
Google Scholar
[101] Li H, Wang H W, He H T, Wang J N, Shen S Q 2018 Phys. Rev. B 97 201110
Google Scholar
[102] Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W, Tian M L 2018 Phys. Rev. B 98 161110
Google Scholar
[103] Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103
Google Scholar
[104] Li P, Zhang C H, Zhang J W, Wen Y, Zhang X X 2018 Phys. Rev. B 98 121108(R
Google Scholar
[105] Huang D, Nakamura H, Takagi H 2021 Phys. Rev. Research 3 013268
Google Scholar
[106] Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X D, Zhou J H, Ning W, Tian M L 2022 Nano Lett. 22 73
Google Scholar
[107] Zhong J Y, Zhuang J C, Du Y 2023 Chin. Phys. B 32 047203
Google Scholar
[108] Gao A Y, Liu Y F, Hu C W, Qiu J X, Tzschaschel C, Ghosh B, Ho S C 2021 Nature 595 521
Google Scholar
[109] Chen R, Sun H P, Gu M Q, Hua C B, Liu Q H, Lu H Z, Xie X C 2022 Natl. Sci. Rev. nwac140
Google Scholar
[110] Zhai D W, Chen C, Xiao C, Yao W 2023 Nat. Commun. 14 1961
Google Scholar
[111] Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821
Google Scholar
[112] Wang X, Du Y, Dou S, Zhang C 2012 Phys. Rev. Lett. 108 266806
Google Scholar
[113] Zhang G, Qin H, Chen J, He X, Lu L, Li Y, Wu K 2011 Adv. Funct. Mater. 21 2351
[114] Tang H, Liang D, Qiu R L J, Gao X P A 2011 ACS Nano 5 7510
Google Scholar
[115] He H, Li B, Liu H, Guo X, Wang Z, Xie M, Wang J 2012 Appl. Phys. Lett. 100 032105
Google Scholar
[116] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J, Li S Y 2014 Phys. Rev. Lett. 113 246402
Google Scholar
[117] Liang T, Gibson Q, Ali M N, Liu M, Cava R J, Ong N P 2015 Nat. Mater. 14 280
Google Scholar
[118] Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C, Kong T, Canfield P C, Coldea A I 2015 Phys. Rev. Lett. 114 117201
Google Scholar
[119] Feng J, Pang Y, Wu D, Wang Z J, Weng H M, Li J, Dai X, Fang Z, Shi Y, Lu L 2015 Phys. Rev. B 92 081306(R
Google Scholar
[120] Tian Y, Ghassemi N, Jr J H R 2021 Phys. Rev. Lett. 126 236401
Google Scholar
[121] Fu B, Wang H W, Shen S Q 2020 Phys. Rev. Lett. 125 256601
Google Scholar
[122] Fu B, Zou J Y, Hu Z A, Wang H W, Shen S Q 2022 npj Quantum Mater. 7 94
Google Scholar
[123] Zou J Y, Fu B, Wang H W, Hu Z A, Shen S Q 2022 Phys. Rev. B 105 L201106
Google Scholar
[124] Zou J Y, Chen R, Fu B, Wang H W, Hu Z A, Shen S Q 2023 Phys. Rev. B 107 125153
Google Scholar
[125] Wang H W, Fu B, Zou J Y, Hu Z A, Shen S Q 2022 Phys. Rev. B 106 045111
Google Scholar
[126] Shen S Q, Bao Y J, Ma M, Xie X C, Zhang F C 2005 Phys. Rev. B 71 155316
Google Scholar
[127] Bjorken J D, Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill Inc.) pp45–60
[128] Shen S Q, Shan W Y, Lu H Z 2011 SPIN 01 33
Google Scholar
[129] Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494
Google Scholar
[130] Klitzing K v, Chakraborty T, Kim P, Madhavan V, Dai X, McIver J, Tokura Y, Savary L, Smirnova D, Rey A M, Felser C, Gooth J, Qi X L 2020 Nat. Rev. Phys. 2 397
Google Scholar
[131] Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125
Google Scholar
[132] Yang B J, Nagaosa N 2014 Nat. Commun. 5 4898
Google Scholar
[133] Wilson K G 1975 New Phenomena in Subnuclear Physics (New York: Plenum) pp69–142
[134] Rothe H J 2005 Lattice Gauge Theories: An Introduction (3rd Ed.) (Singapore: World Scientific) pp56–57
[135] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J 2017 Nat. Commun. 8 15512
Google Scholar
[136] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438
Google Scholar
[137] Xia Y Q, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398
Google Scholar
[138] Zee A 2010 Quantum Field Theory in a Nutshell (Vol. 7) (Princeton: Princeton University Press) pp99–100
[139] Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C, Wang Y Y 2011 Phys. Rev. B 83 165440
Google Scholar
[140] Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedl K J 2012 Phys. Rev. B 85 115314
Google Scholar
[141] Jing Y M, Huang S Y, Zhang K, Wu J X, Guo Y F, Peng H L, Liu Z F, Xu H Q 2016 Nanoscale 8 1879
Google Scholar
[142] Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288
Google Scholar
[143] Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
Google Scholar
[144] Liu Q, Liu C X, Xu C K, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603
Google Scholar
[145] Chen Y L, C hu, J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H 2010 Science 329 659
Google Scholar
[146] Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126
Google Scholar
[147] Okada S, Sambongi T, Ido M 1980 J. Phys. Soc. Jpn. 49 839
Google Scholar
[148] Izumi M, Uchinokura K, Matsuura E 1981 Solid State Commun. 37 641
Google Scholar
[149] DiSalvo F, Fleming R, Waszczak J 1981 Phys. Rev. B 24 2935
Google Scholar
[150] Okada S, Sambongi T, Ido M, Tazuke Y, Aoki R, Fujita O 1982 J. Phys. Soc. Jpn. 51 460
Google Scholar
[151] Bullett D 1982 Solid State Commun. 42 691
Google Scholar
[152] Fjellvag H, Kjekshus A 1986 Solid State Commun. 60 91
Google Scholar
[153] Chen Z G, Chen R, Zhong R, Schneeloch J, Zhang C, Huang Y, Qu F, Yu R, Li Q, Gu G, Wang N 2017 Proc. Natl. Acad. Sci. U.S.A. 114 816
Google Scholar
[154] Manzoni G, Gragnaniello L, AutASs G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V 2016 Phys. Rev. Lett. 117 237601
Google Scholar
[155] Zhang J L, Wang C M, Guo C Y, Zhu X D, Zhang Y, Yang J Y, Wang Y Q, Qu Z, Pi L, Lu H Z, Tian M L 2019 Phys. Rev. Lett. 123 196602
Google Scholar
[156] Jiang Y, Wang J, Zhao T, Dun Z L, Huang Q, Wu X S, Mourigal M, Zhou H D, Pan W, Ozerov M, Smirnov D, Jiang Z 2020 Phys. Rev. Lett. 125 046403
Google Scholar
[157] Wang P, Ren Y, Tang F, Wang P, Hou T, Zeng H, Zhang L, Qiao Z H 2020 Phys. Rev. B 101 161201
Google Scholar
[158] Zhao L X, Huang X C, Long Y J, Chen D, Liang H, Yang Z H, Xue M Q, Ren Z A, Weng H M, Fang Z, Dai X, Chen G F 2017 Chin. Phys. Lett. 34 037102
Google Scholar
[159] Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055
Google Scholar
[160] Xu B, Zhao L, Marsik P, Sheveleva E, Lyzwa F, Dai Y, Chen G, Qiu X, Bernhard C 2018 Phys. Rev. Lett. 121 187401
Google Scholar
[161] Wang C J 2021 Phys. Rev. Lett. 126 126601
Google Scholar
[162] Wang Y G, Legg H F, Bömerich T, Park J, Biesenkamp S, Taskin A A, Braden M, Rosch A, Ando Y 2022 Phys. Rev. Lett. 128 176602
Google Scholar
[163] Zhang Y, Wang C, Liu G, Liang A, Zhao L, Huang J, Gao Q, Shen B 2017 Sci. Bull. 62 950
Google Scholar
[164] Adler S L 1969 Phys. Rev. 177 2426
Google Scholar
[165] Bell J S, Jackiw R 1969 Nuovo Cimento A 60 47
Google Scholar
[166] Fujikawa K 1979 Phys. Rev. Lett. 42 1195
Google Scholar
[167] Peskin M E, Schroeder D V 1995 An Introduction to Quantum Field Theory (Cambridge: Perseus Books Publishing LLC) pp651–667
[168] Weinberg S 1995 The Quantum Theory of Fields (Vol. 2) (Cambridge: Cambridge University Press) pp473–485
[169] Dirac P A M 1958 The Principles of Quantum Mechanics (New York: Oxford University Press Inc.) pp253–267
[170] Jackiw R, Johnson K 1969 Phys. Rev. 182 1459
Google Scholar
[171] Kharzeev D E, Kikuchi Y, Meyer R, Tanizaki Y 2018 Phys. Rev. B 98 014305
Google Scholar
[172] Yamamoto N, Yang D L 2021 Phys. Rev. D 103 125003
Google Scholar
[173] Vilenkin A 1980 Phys. Rev. D 22 3080
Google Scholar
[174] Fukushima K, Fukushima D E, Warringa H J 2008 Phys. Rev. D 78 074033
Google Scholar
[175] Huang Z M, Zhou J H, Shen S Q 2017 Phys. Rev. B 96 085201
Google Scholar
[176] Lu H Z, Zhang S B, Shen S Q 2015 Phys. Rev. B 92 045203
Google Scholar
[177] Zhang S B, Lu H Z, Shen S Q 2016 New J. Phys. 18 053039
Google Scholar
[178] Klier J, Gornyi I V, Mirlin A D 2017 Phys. Rev. B 96 214209
Google Scholar
[179] Niemi A J, Semenoff G W 1983 Phys. Rev. Lett. 51 2077
Google Scholar
[180] Redlich A N 1984 Phys. Rev. Lett. 52 18
Google Scholar
[181] Jackiw R 1984 Phys. Rev. D 29 2375
Google Scholar
[182] Boyanovsky D, Blankenbecler R, Yahalom R 1986 Nucl. Phys. B 270 483
Google Scholar
[183] Schakel A M J 1991 Phys. Rev. D 43 1428
Google Scholar
[184] Chu R L, Shi J R, Shen S Q 2011 Phys. Rev. B 84 085312
Google Scholar
[185] Lapa M F 2019 Phys. Rev. B 99 235144
Google Scholar
[186] Lu R, Sun H, Kumar S, Wang Y, Gu M, Zeng M, Hao Y J, Li J 2021 Phys. Rev. X 11 011039
Google Scholar
[187] Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
Google Scholar
[188] Sitte M, Rosch A, Altman E, Fritz L 2012 Phys. Rev. Lett. 108 126807
Google Scholar
[189] Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107
Google Scholar
[190] Gu M, Li J, Sun H, Zhao Y, Liu C, Liu J, Lu H, Liu Q 2021 Nat. Commun. 12 3524
Google Scholar
[191] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516
Google Scholar
[192] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669
Google Scholar
[193] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801
Google Scholar
[194] Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401
Google Scholar
[195] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mat. 19 522
Google Scholar
[196] Wilczek F 1987 Phys. Rev. Lett. 58 1799
Google Scholar
[197] Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424
Google Scholar
[198] Spaldin N A, Fiebig M 2005 Science 309 391
Google Scholar
[199] Fiebig M 2005 J. Phys. D 38 R123
Google Scholar
[200] Maciejko J, Qi X L, Drew H D, Zhang S C 2010 Phys. Rev. Lett. 105 166803
Google Scholar
[201] Tse W K, MacDonald A H 2011 Phys. Rev. B 84 205327
Google Scholar
[202] Li R, Wang J, Qi X L, Zhang S C 2010 Nat. Phys. 6 284
Google Scholar
[203] Sekine A, Nomura K 2014 J Phys. Soc. Jpn. 83 104709
Google Scholar
[204] Sekine A, Nomura K 2021 J. Appl. Phys. 129 141101
Google Scholar
[205] Shoron O F, Kealhofer D A, Goyal M, Schumann T, Burkov A A, Stemmer S 2021 Appl. Phys. Lett. 119 171907
Google Scholar
[206] Abrikosov A A 1998 Phys. Rev. B 58 2788
Google Scholar
[207] Parish M M, Littlewood P B 2003 Nature 426 162
Google Scholar
[208] Parish M M, Littlewood P B 2005 Phys. Rev. B 72 094417
Google Scholar
[209] Cao H, Tian J, Miotkowski I, Shen T, Hu J, Qiao S, Chen Y P 2012 Phys. Rev. Lett. 108 216803
Google Scholar
[210] Wang C M, Lei X L 2012 Phys. Rev. B 86 035442
Google Scholar
[211] Avron J E, Seiler R, Simon B 1983 Phys. Rev. Lett. 51 51
Google Scholar
[212] Halperin B I 1987 Jpn. J. Appl. Phys. 26 1913
Google Scholar
[213] Zhao P L, Lu H Z, Xie X C 2021 Phys. Rev. Lett. 127 046602
Google Scholar
[214] Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539
Google Scholar
[215] Chen R, Shen S Q 2023 arXiv: 2304.04229 [cond-mat]
[216] Zhou H M, Li H L, Xu D H, Chen C Z, Sun Q F, Xie X C 2022 Phys. Rev. Lett. 129 096601
Google Scholar
[217] Gong M, Liu H W, Jiang H, Chen C Z, Xie X C 2023 Natl. Sci. Rev 10 nwad025
Google Scholar
[218] Goos F, Hanchen H 1947 Ann. Phys. 436 333
Google Scholar
Catalog
Metrics
- Abstract views: 6200
- PDF Downloads: 405
- Cited By: 0