Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structures and molecular doping of germanane regulated by hydrogen vacancy clusters

Yang Zi-Hao Liu Gang Wu Mu-Sheng Shi Jing Ouyang Chu-Ying Yang Shen-Bo Xu Bo

Citation:

Electronic structures and molecular doping of germanane regulated by hydrogen vacancy clusters

Yang Zi-Hao, Liu Gang, Wu Mu-Sheng, Shi Jing, Ouyang Chu-Ying, Yang Shen-Bo, Xu Bo
PDF
HTML
Get Citation
  • Germanane is expected to substitute for existing silicon-based or germanium-based material. Germanane is regarded as an ideal candidate for next-generation semiconductor material due to its suitable band gap, high electron mobility, better environmental stability, small electrical noise and ultrathin geometry. In this work, the effects of different configuration and concentration of hydrogen vacancy cluster on the electronic properties of germanane and its molecular doping are systematically investigated through the first-principles method based on density functional theory and none-quilibrium Green’s function. The results show that the hydrogen vacancy clusters with different configurations can induce magnetism with different characteristics in GermananeDehydrogenated-xH (GD-xH) system, and the magnetic moments are consistent with the predictions of Lieb’s theorem. Moreover, the p-type-liked doping effects caused by defective state under GD-xH (x = 1, 4, 6) systems can be realized in their spin-down band structures. The corresponding energy values for exciting electron would gradually decrease with the increase of the concentration of hydrogen vacancy clusters under different configurations. After adsorbing tetrathiafulvalene (TTF) molecules, G/TTF and GD-xH/TTF (x = 1, 2, 6) systems exhibit molecular doping characteristics induced by the TTF molecules. More importantly, for GD-xH/TTF (x = 1, 6) system, the different molecular doping types can be introduced in spin-up and spin-down band structures due to the hybridization composed of molecular orbitals and defective states under spin polarization. Further calculations of their transport properties indicate that germanane-based device with Armchair and Zigzag configurations both exhibit intensive isotropy, and the performance of I-V characteristics can be dramatically enhanced owing to the carrier doping by TTF adsorption.
      Corresponding author: Liu Gang, 721lg@jxnu.edu.cn ; Xu Bo, bxu4@mail.ustc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20224ACB201010, 20212BAB201017), the National Natural Science Foundation of China (Grant Nos. 12064014, 12064015, 51962010, 12174162, 12164019), and the Program of HZWTECH (HZWTECH-PROP).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar

    [5]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [6]

    Sahoo N G, Esteves R J, Punetha V D, Pestov D, Arachchige I U, McLeskey J T 2016 Appl. Phys. Lett. 109 023507Google Scholar

    [7]

    Madhushankar B N, Kaverzin A, Giousis T, Potsi G, Gournis D, Rudolf P, Blake G R, van der Wal C H, van Wees B J 2017 2D Mater. 4 021009Google Scholar

    [8]

    Hu L, Zhao J, Yang J 2014 J. Phys. Condens. Matter. 26 335302Google Scholar

    [9]

    Li Y, Chen Z 2014 J. Phys. Chem. C 118 1148Google Scholar

    [10]

    Ma Y, Dai Y, Lu Y B, Huang B 2014 J. Mater. Chem. C 2 1125Google Scholar

    [11]

    Zhou Y, Liu K, Xiao H, Xiang X, Nie J, Li S, Huang H, Zu X 2015 J. Mater. Chem. C 3 3128Google Scholar

    [12]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298Google Scholar

    [13]

    Chandiramouli R 2017 J. Mol. Liq. 242 571Google Scholar

    [14]

    Kannan V, Ganesan V, Vijayakumar V 2022 Comput. Theor. Chem. 1214 113799Google Scholar

    [15]

    Vajda S, Pellin M J, Greeley J P, Marshall C L, Curtiss L A, Ballentine G A, Elam J W, Catillon-Mucherie S, Redfern P C, Mehmood F, Zapol P 2009 Nat. Mater. 8 213Google Scholar

    [16]

    Zhou S, Zhao J 2016 J. Phys. Chem. C 120 21691Google Scholar

    [17]

    Wang X, Liu G, Liu R F, Luo W W, Wu M S, Sun B Z, Lei X L, Ouyang C Y, Xu B 2018 Nanotechnology 29 465202Google Scholar

    [18]

    Cui Z, Luo Y, Yu J, Xu Y 2021 Physica E 134 114873Google Scholar

    [19]

    Yan H, Ma W 2022 Adv. Funct. Mater. 32 2111351Google Scholar

    [20]

    Qin Z, Gao C, Wong W W H, Riede M K, Wang T, Dong H, Zhen Y, Hu W 2020 J. Mater. Chem. C 8 14996Google Scholar

    [21]

    Ye J P, Liu G, Han Y, Luo W W, Sun B Z, Lei X L, Xu B, Ouyang C Y, Zhang H L 2019 Phys. Chem. Chem. Phys. 21 20287Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [26]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [27]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [28]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [29]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862Google Scholar

    [30]

    Ali M, Pi X, Liu Y, Yang D 2017 AIP Adv. 7 045308Google Scholar

    [31]

    Kuklin A V, Begunovich L V, Gao L, Zhang H, Ågren H 2021 Phys. Rev. B 104 134109Google Scholar

    [32]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [33]

    Hongzhiwei Technology 2021 Device Studio (Version 2021B) (Shanghai)

    [34]

    武红, 李峰 2016 65 096801Google Scholar

    Wu H, Li F 2016 Acta Phys. Sin. 65 096801Google Scholar

    [35]

    Liu L, Ji Y, Liu L 2019 Bull. Mater. Sci. 42 157Google Scholar

    [36]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201Google Scholar

    [37]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [38]

    Kiriya D, Tosun M, Zhao P, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853Google Scholar

  • 图 1  锗烷中典型的4种氢空位簇构型俯视图(蓝色和绿色小球分别代表Ge和H原子) (a) GD-1H; (b) GD-2H; (c) GD-4H; (d) GD-6H

    Figure 1.  Top view of four typical configurations for different hydrogen vacancy clusters in germanane: (a) GD-1H; (b) GD-2H; (c) GD-4H; (d) GD-6H. Blue and green spherules represent Ge and H atoms, respectively.

    图 2  (a)—(e) 锗烷和不同氢空位簇锗烷 GD-xH (x = 1, 2, 4, 6)体系对应的能带结构; (f) Eg, Ep和体系磁矩随脱氢浓度的变化

    Figure 2.  (a)–(e) Corresponding band structures of germanane and different hydrogen vacancy clusters GD-xH (x = 1, 2, 4, 6) systems; (f) Eg, Ep and magnetic moment as a function of dehydrogenation concentration.

    图 3  G/TTF和GD\text{-}xH/TTF (x = 1, 2, 4, 6)体系最佳吸附构型的俯视图和侧视图 (a) G/TTF, H2-site; (b) GD-1H/TTF, V2-side; (c) GD-2H/TTF, B2-side; (d) GD-4H/TTF, H2-side; (e) GD-6H/TTF, V2-side. 蓝色、绿色、红色和棕色小球分别代表Ge, H, S和C原子

    Figure 3.  Top and side views of optimal adsorption configuration of G/TTF and GD–xH/TTF (x = 1, 2, 4, 6) systems : (a) G/TTF, H2-site; (b) GD-1H/TTF, V2-side; (c) GD-2H/TTF, B2-side; (d) GD-4H/TTF, H2-side; (e) GD-6H/TTF, V2-side. Blue, green, red and brown spheres represent Ge, H, S, and C atoms, respectively.

    图 4  (a) G/TTF和 (b)—(e) GD-xH/TTF (x = 1, 2, 4, 6)体系对应能带结构, 其中绿色和粉色平带分别代表由TTF分子贡献和脱氢处的Ge原子贡献, 橙色平带代表由TTF分子和脱氢处Ge原子共同贡献; (f) Eg, En, Ep和体系净磁矩随脱氢浓度的变化

    Figure 4.  Corresponding band structures of (a) G/TTF and (b)–(e) GD-xH/TTF (x = 1, 2, 4, 6) systems, where green and pink flat bands represent contribution of TTF molecule and Ge atoms at dehydrogenation, respectively, orange flat bands represent the joint contribution of TTF molecule and Ge atom at dehydrogenation; (f) Eg, En, Ep and magnetic moment as a function of dehydrogenation concentration.

    图 5  (a) G/TTF和(b)—(e) GD-xH/TTF (x = 1, 2, 4, 6)体系的HOMO和LUMO, 其中等值面设为 0.004 e3

    Figure 5.  HOMO and LUMO in the (a) G/TTF and (b)–(e) GD-xH/TTF (x = 1, 2, 4, 6) systems. Isosurface level is set to 0.004 e3.

    图 6  (a)—(e) G/TTF和GD-xH/TTF (x = 1, 2, 4, 6)体系的差分电荷密度俯视和侧视图, 其中青色和黄色分别代表失电荷和得电荷; 等值面设为0.0002 e3 (a)和 0.001 e3 (b)—(e)

    Figure 6.  (a)–(e) Top and side views of differential charge density for G/TTF and GD–xH/TTF (x = 1, 2, 4, 6) systems. Cyan and yellow color represents deficiency and accumulation of electron, respectively. Isosurface is set to 0.0002 e3 and 0.001 e3 in panel (a) and (b)–(e), respectively.

    图 7  基于 Armchair (a)和Zigzag(b)构型的锗烷基纳米器件模型

    Figure 7.  Germanane-based nanodevice model with Armchair (a) and Zigzag (b) type configurations.

    图 8  Armchair (a)和Zigzag(b)类型的锗烷纳米器件模型的电子透射谱和态密度图, 其中蓝色实线表示透射谱曲线, 绿色虚线表示态密度

    Figure 8.  Electron transmission spectra and DOS along Armchair (a) and Zigzag (b) directions in germanane-based nanodevice model. Blue implementation represents the transmission spectral curve, and the green dashed line represents the DOS.

    图 9  本征锗烷(a)、G/TTF(b)和GD-xH/TTF (x = 1, 2) (c), (d)基器件的I-V特性曲线

    Figure 9.  I-V characteristic curves for devices based on intrinsic germanane (a), G/TTF (b) and GD-xH/TTF (x = 1, 2) (c), (d).

    表 1  本征锗烷和脱氢锗烷的磁矩、Ge—H键长、Ge—Ge键长以及Ge原子的平均褶皱高度

    Table 1.  Magnetic moment, Ge—H bond length, Ge—Ge bond length and the average height of the Ge atoms in different configurations of dehydrogenated germanane.

    参数GermananeGD-1HGD-2HGD-4HGD-6H
    $ \mu /{\mu }_{{\rm{B}}} $01.00002.0000
    ${d}_{ {\rm{G} }{\rm{e} }\text{—}{\rm{H} } }/$Å1.5611.561—1.5681.562—1.5671.562—1.5671.564—1.570
    ${d}_{ {\rm{G} }{\rm{e} }\text{—}{\rm{G} }{\rm{e} } }$/Å2.4672.465—2.4872.345—2.4932.430—2.4922.415—2.492
    Δ0.7250.7260.7330.7340.735
    DownLoad: CSV

    表 2  G/TTF和GD-xH/TTF (x = 1, 2, 4, 6)体系最佳吸附构型所对应的吸附能, 净磁矩, 结构参数和电荷转移量

    Table 2.  Adsorption energy, magnetic moment, structural parameters and charge transfer of optimal adsorption configuration of G/TTF and GD-xH/TTF (x = 1, 2, 4, 6) systems.

    参数G/TTFGD-1H/TTFGD-2H/TTFGD-4H/TTFGD-6H/TTF
    $ {E}_{{\rm{a}}{\rm{d}}} $/eV0.5830.8890.7660.8951.230
    $ \mu $/$ {\mu }_{{\rm{B}}} $01.00002.0000
    d4.5924.2944.3073.7373.527
    ${d}_{ {\rm{G} }{\rm{e} }\text{—}{\rm{G} }{\rm{e} } }$/Å2.468—2.4702.467—2.5232.384—2.5012.469—2.5062.423—2.517
    ${d}_{ {\rm{G} }{\rm{e} }\text{—}{\rm{H} } }$/Å1.560—1.5681.563—1.5711.563—1.5711.563—1.5771.563—1.570
    Δ0.7350.7380.7340.7390.736
    Q/e0.0290.3920.1950.2300.200
    DownLoad: CSV
    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [4]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar

    [5]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414Google Scholar

    [6]

    Sahoo N G, Esteves R J, Punetha V D, Pestov D, Arachchige I U, McLeskey J T 2016 Appl. Phys. Lett. 109 023507Google Scholar

    [7]

    Madhushankar B N, Kaverzin A, Giousis T, Potsi G, Gournis D, Rudolf P, Blake G R, van der Wal C H, van Wees B J 2017 2D Mater. 4 021009Google Scholar

    [8]

    Hu L, Zhao J, Yang J 2014 J. Phys. Condens. Matter. 26 335302Google Scholar

    [9]

    Li Y, Chen Z 2014 J. Phys. Chem. C 118 1148Google Scholar

    [10]

    Ma Y, Dai Y, Lu Y B, Huang B 2014 J. Mater. Chem. C 2 1125Google Scholar

    [11]

    Zhou Y, Liu K, Xiao H, Xiang X, Nie J, Li S, Huang H, Zu X 2015 J. Mater. Chem. C 3 3128Google Scholar

    [12]

    Zhao J, Zeng H 2016 RSC Adv. 6 28298Google Scholar

    [13]

    Chandiramouli R 2017 J. Mol. Liq. 242 571Google Scholar

    [14]

    Kannan V, Ganesan V, Vijayakumar V 2022 Comput. Theor. Chem. 1214 113799Google Scholar

    [15]

    Vajda S, Pellin M J, Greeley J P, Marshall C L, Curtiss L A, Ballentine G A, Elam J W, Catillon-Mucherie S, Redfern P C, Mehmood F, Zapol P 2009 Nat. Mater. 8 213Google Scholar

    [16]

    Zhou S, Zhao J 2016 J. Phys. Chem. C 120 21691Google Scholar

    [17]

    Wang X, Liu G, Liu R F, Luo W W, Wu M S, Sun B Z, Lei X L, Ouyang C Y, Xu B 2018 Nanotechnology 29 465202Google Scholar

    [18]

    Cui Z, Luo Y, Yu J, Xu Y 2021 Physica E 134 114873Google Scholar

    [19]

    Yan H, Ma W 2022 Adv. Funct. Mater. 32 2111351Google Scholar

    [20]

    Qin Z, Gao C, Wong W W H, Riede M K, Wang T, Dong H, Zhen Y, Hu W 2020 J. Mater. Chem. C 8 14996Google Scholar

    [21]

    Ye J P, Liu G, Han Y, Luo W W, Sun B Z, Lei X L, Xu B, Ouyang C Y, Zhang H L 2019 Phys. Chem. Chem. Phys. 21 20287Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [26]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [27]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [28]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [29]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862Google Scholar

    [30]

    Ali M, Pi X, Liu Y, Yang D 2017 AIP Adv. 7 045308Google Scholar

    [31]

    Kuklin A V, Begunovich L V, Gao L, Zhang H, Ågren H 2021 Phys. Rev. B 104 134109Google Scholar

    [32]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [33]

    Hongzhiwei Technology 2021 Device Studio (Version 2021B) (Shanghai)

    [34]

    武红, 李峰 2016 65 096801Google Scholar

    Wu H, Li F 2016 Acta Phys. Sin. 65 096801Google Scholar

    [35]

    Liu L, Ji Y, Liu L 2019 Bull. Mater. Sci. 42 157Google Scholar

    [36]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201Google Scholar

    [37]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [38]

    Kiriya D, Tosun M, Zhao P, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853Google Scholar

  • [1] Chen Jian, Xiong Kang-Lin, Feng Jia-Gui. Adsorption of CoPc molecules on silicene surface. Acta Physica Sinica, 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [2] Zhang Xiao-Chao, Guan Mei-Hua, Zhang Qi-Rui, Zhang Chang-Ming, Li Rui, Liu Jian-Xin, Wang Ya-Wen, Fan Cai-Mei. First-principles study of single-atom Pt adsorption on BiOBr{001} surface with different atomic exposure terminations. Acta Physica Sinica, 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [3] Adsorption of Copc Molecules on Monolayer Silicene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211607
    [4] Molecular dynamics study on the effect of defects on magnetostriction of iron thin films. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211177
    [5] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [6] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [7] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [8] Wu Hong, Li Feng. Mechanisms on the GeH/ interactions in germanene/germanane bilayer for tuning band structures. Acta Physica Sinica, 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [9] Zhang Xiu-Rong, Wang Yang-Yang, Li Wei-Jun, Yuan Ai-Hua. Density functional theory study of the adsorption of CO on Wn (n= 16) clusters. Acta Physica Sinica, 2013, 62(5): 053603. doi: 10.7498/aps.62.053603
    [10] Ruan Wen, Xie An-Dong, Yu Xiao-Guang, Wu Dong-Lan. Geometric structure and electronic characteristics of NaBn (n=19) clusters. Acta Physica Sinica, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [11] Qin Jun-Rui, Chen Shu-Ming, Zhang Chao, Chen Jian-Jun, Liang Bin, Liu Bi-Wei. First-principles study of adsorption effect of A-Z-A graphene nanoribbons field effect transistor. Acta Physica Sinica, 2012, 61(2): 023102. doi: 10.7498/aps.61.023102
    [12] Li Jian-Hua, Zeng Xiang-Hua, Ji Zheng-Hua, Hu Yi-Pei, Chen Bao, Fan Yu-Pei. Electronic structure and optical properties of Ag-doping and Zn vacancy impurities in ZnS. Acta Physica Sinica, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [13] Liu Bai-Nian, Ma Ying, Zhou Yi-Chun. First-principles study of defect properties in tetragonal BaTiO3. Acta Physica Sinica, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [14] Zhou Kai, Li Hui, Wang Zhu. Defects in proton-irradiated Zn-doped GaSb studied by positron annihilation and photoluminescence. Acta Physica Sinica, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [15] Zhao Wei, Wang Jia-Dao, Liu Feng-Bin, Chen Da-Rong. First principles study of H2O molecule adsorption on Fe(100), Fe(110) and Fe(111) surfaces. Acta Physica Sinica, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [16] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [17] Hao Xiao-Peng, Wang Bao-Yi, Yu Run-Sheng, Wei Long. Zirconium-ion implantation of zircaloy-4 investiged by slow positron beam. Acta Physica Sinica, 2007, 56(11): 6543-6546. doi: 10.7498/aps.56.6543
    [18] Jin Nian-Qing, Teng Yu-Yong, Gu Bin, Zeng Xiang-Hua. Study of rare-gas atom injection into defective carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [19] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [20] Li Peng-Fei, Yan Xiao-Hong, Wang Ru-Zhi. . Acta Physica Sinica, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
  • supplement 127101-20230170补充材料.pdf supplement
Metrics
  • Abstract views:  2961
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  10 February 2023
  • Accepted Date:  14 March 2023
  • Available Online:  24 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回
Baidu
map