Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Composition-spread epitaxial ferroelectric thin films for temperature-insensitive functional devices

Xiong Pei-Yu Ni Zhuang Lin Ze-Feng Bai Xin-Bo Liu Tian-Xiang Zhang Xiang-Yu Yuan Jie Wang Xu Shi Jing Jin Kui

Citation:

Composition-spread epitaxial ferroelectric thin films for temperature-insensitive functional devices

Xiong Pei-Yu, Ni Zhuang, Lin Ze-Feng, Bai Xin-Bo, Liu Tian-Xiang, Zhang Xiang-Yu, Yuan Jie, Wang Xu, Shi Jing, Jin Kui
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • BaxSr1–xTiO3 (BST) ferroelectric thin films are widely used in microwave tunable devices due to their high dielectric constants, strong electric field tunabilities and low microwave losses. However, because of the temperature dependence of dielectric constant in ferroelectric material, the high-tunability for conventional single component ferroelectric thin film can only be achieved in the vicinity of Curie Temperature (TC) which leads the ferroelectric thin films to be difficult to operate in a wide temperature range. To obtain ferroelectric thin films for temperature stable functional devices, single composition Ba0.2Sr0.8TiO3 thin films, Ba0.5Sr0.5TiO3 thin films, and Ba0.2Sr0.8TiO3/Ba0.5Sr0.5TiO3 heterostructure thin films are deposited by pulsed laser deposition (PLD). By comparing their dielectric properties in a wide temperature range, it is found that the temperature sensitivity of BST film can be effectively reduced by introducing a composition gradient along the epitaxial direction. However, the heterostructure engineering may bring extra troubles caused by interfaces, which may limit the quality factor Q. In this paper, we extend our combinatorial film deposition technique to ferroelectric materials, and we successfully fabricate in-plane composition-spread Ba1–xSrxTiO3 thin films, which are expected to broaden the phase transition temperature ranges of BST films while avoiding the problem of interface control.
      Corresponding author: Wang Xu, risingsunwx@iphy.ac.cn ; Shi Jing, jshi@whu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA0718700).
    [1]

    Valasek J 1921 Phys. Rev. 17 475Google Scholar

    [2]

    Busch G 1987 Ferroelectrics 74 267Google Scholar

    [3]

    Fousek J 1994 Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics PA, USA, Augest 7–10, 1994 pp1–5

    [4]

    Xu Y 1991 Ferroelectric Materials and their Applications (Amsterdam: Elsevier) pp1–36

    [5]

    Mikami N 1997 Thin Film Ferroelectric Materials and Devices (Boston, MA: Springer US) pp43–70

    [6]

    Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti Jr G A, Rödel J 2017 Appl. Phys. Rev. 4 041305Google Scholar

    [7]

    Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceramics 11 5Google Scholar

    [8]

    Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. and Technol. 11 1323Google Scholar

    [9]

    Vendik O G, Hollmann E K, Kozyrev A B, Prudan A M 1999 J. Supercond. 12 325Google Scholar

    [10]

    Xi X X, Li H, Si W, Sirenko A A, Akimov I A, Fox J R, Clark A M, Hao J 2000 J. Electroceram. 4 393Google Scholar

    [11]

    Baik S, Setter N, Auciello O 2006 J. Appl. Phys. 100 051501Google Scholar

    [12]

    Korn D S, Wu H D 1999 Integr. Ferroelectr. 24 215Google Scholar

    [13]

    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar

    [14]

    Scott J F 2000 Ferroelectric Memories (Berlin, Heidelberg: Springer) pp1–22

    [15]

    Scheele P, Goelden F, Giere A, Mueller S, Jakoby R 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, CA, USA, June 17, 2005 pp603–606

    [16]

    Deleniv A, Abadei S, Gevorgian S 2003 IEEE MTT-S International Microwave Symposium Digest (Vol. 2), Philadelphia, PA, USA, June 8–13, 2003 p1267

    [17]

    Kuylenstierna D, Vorobiev A, Linner P, Gevorgian S 2006 IEEE Microw. Wirel. Compon. Lett. 16 167Google Scholar

    [18]

    Mahmud A, Kalkur T S, Jamil A, Cramer N 2006 IEEE Microw. Wirel. Compon. Lett. 16 261Google Scholar

    [19]

    Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D Appl. Phys. 41 063001Google Scholar

    [20]

    Cole M W, Ngo E, Hirsch S, Demaree J D, Zhong S, Alpay S P 2007 J. Appl. Phys. 102 034104Google Scholar

    [21]

    Li F, Zhang S, Damjanovic D, Chen L-Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar

    [22]

    Setter N, Cross L E 1980 J. Appl. Phys. 51 4356Google Scholar

    [23]

    Jeong I K, Darling T W, Lee J K, Proffen T, Heffner R H, Park J S, Hong K S, Dmowski W, Egami T 2005 Phys. Rev. Lett. 94 147602Google Scholar

    [24]

    Yao G, Wang X, Wu Y, Li L 2012 J. Am. Ceram. Soc. 95 614Google Scholar

    [25]

    Wang S F, Li J H, Hsu Y F, Wu Y C, Lai Y C, Chen M H 2013 J. Eur. Ceram. Soc. 33 1793Google Scholar

    [26]

    Vendik O G, Zubko S P 2000 J. Appl. Phys. 88 5343Google Scholar

    [27]

    Zhu X H, Meng Q D, Yong L P, He Y S, Cheng B L, Zheng D N 2006 J. Phys. D: Appl. Phys. 39 2282Google Scholar

    [28]

    Kim W J, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 Appl. Phys. Lett. 76 1185Google Scholar

    [29]

    金魁, 吴颉 2021 70 017403Google Scholar

    Jin K, Wu J 2021 Acta Phys. Sin. 70 017403Google Scholar

    [30]

    Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033Google Scholar

    [31]

    Chang W, Kirchoefer S W, Pond J M, Horwitz J S, Sengupta L 2002 J. Appl. Phys. 92 1528Google Scholar

    [32]

    Boikov Y A, Claeson T 2001 Appl. Phys. Lett. 79 2052Google Scholar

    [33]

    Wang H Z, Dong Y X, Zhu R J, Wang Z M, Guo X L, Zhang T, Yuan G L, Kimura H 2019 Ceram. Int. 45 8300Google Scholar

    [34]

    Kim W J, Wu H D, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 J. Appl. Phys. 88 5448Google Scholar

    [35]

    Ding Y P, Wu J S, Meng Z Y, Chan H L, Choy Z L 2002 Mater. Chem. Phys. 75 220Google Scholar

    [36]

    Schimizu T 1997 Solid State Commun. 102 523Google Scholar

    [37]

    Gevorgian S, Petrov P K, Ivanov Z, Wikborg E 2001 Appl. Phys. Lett. 79 1861Google Scholar

    [38]

    Dong H T, Lu G P, Jin D P, Chen J G, Cheng J R 2016 J. Mater. Sci. 51 8414Google Scholar

    [39]

    Zhu R J, Wang Z M, Cheng Z X, Guo X L, Zhang T, Cai Z L, Kimura H, Matsumoto T, Shibata N, Ikuhara Y 2020 Ceram. Int. 46 20284Google Scholar

    [40]

    Cole M W, Ngo E, Hirsch S, Okatan M B, Alpay S P 2008 Appl. Phys. Lett. 92 072906Google Scholar

    [41]

    Marksz E J, Hagerstrom A M, Zhang X, Al Hasan N, Pearson J, Drisko J A, Booth J C, Long C J, Takeuchi I, Orloff N D 2021 Phys. Rev. Appl. 15 064061Google Scholar

  • 图 1  Ba0.5Sr0.5TiO3样品的(a)面外X射线θ-2θ扫描, (b) (031)峰倒易空间衍射(RSM), (c) X射线面内φ扫描, (d)室温下电容值与品质因子随外加电场的变化

    Figure 1.  (a) Out of plane XRD spectra of θ-2θ scanning for Ba0.5Sr0.5TiO3 film; (b) RSM of (301) diffraction peak for Ba0.5Sr0.5TiO3 film; (c) XRD spectra of φ scanning for Ba0.5Sr0.5TiO3 film; (d) dependence of capacitance and Q with electric field at room temperature.

    图 2  不同生长氧压的Ba0.5Sr0.5TiO3薄膜的(a) C0和(b)品质因子随温度变化; 不同生长氧压的Ba0.2Sr0.8TiO3薄膜的(c) C0和(d)品质因子随温度变化

    Figure 2.  Temperature dependence of C0 (a) and Q (b) for Ba0.5Sr0.5TiO3 films deposited at different oxygen pressures; the temperature dependence of C0 (c) and Q (d) for Ba0.2Sr0.8TiO3 films deposited at different oxygen pressures.

    图 3  Ba0.5Sr0.5TiO3和Ba0.2Sr0.8TiO3薄膜的(a) TM和(b) nrMAX随生长氧压的变化

    Figure 3.  Relationship between TM (a) and nrMAX (b) for the Ba0.5Sr0.5TiO3 and Ba0.2Sr0.8TiO3 films and their growth oxygen pressure.

    图 4  (a) Ba0.5Sr0.5TiO3组分样品的面内(a)、面外晶格常数(c)及四方畸变比(a/c)随生长氧压的变化; (b) Ba0.5Sr0.5TiO3组分样品的可调率随四方畸变比a/c的变化

    Figure 4.  (a) Relationship between the in-plane lattice constant (a), out-of-plane lattice constant (c), the ratio of in-plane lattice constant/ out-of-plane lattice constant (a/c) of Ba0.5Sr0.5TiO3 films and their growth oxygen pressure; (b) the relationship between the nrMAX and a/c of Ba0.5Sr0.5TiO3 films.

    图 5  (a) Ba0.2Sr0.8TiO3/Ba0.5Sr0.5TiO3异质结构样品介电可调率的温度依赖性与单组分样品对比; (b) 异质结构样品的介电可调率与品质因子随温度的变化

    Figure 5.  (a) Temperature dependence of nr of the BST heterostructure film compared with BST single component films; (b) temperature dependence of nr and Q of the BST heterostructure film.

    图 6  连续组分BaxSr1–xTiO3薄膜的(a)微区XRD θ-2θ扫描, (b) c轴晶格常数随Ba掺杂量x的演化

    Figure 6.  (a) Micro-region θ-2θ X-ray patterns of composition-spread BaxSr1–xTiO3 thin film; (b) Ba content x dependence of the c-axis lattice constants for a composition-spread BaxSr1–xTiO3 thin film.

    图 7  连续组分BaxSr1–xTiO3薄膜叉指电容示意图

    Figure 7.  Schematic diagram of composition-spread BaxSr1–xTiO3 thin film interdigital capacitor.

    Baidu
  • [1]

    Valasek J 1921 Phys. Rev. 17 475Google Scholar

    [2]

    Busch G 1987 Ferroelectrics 74 267Google Scholar

    [3]

    Fousek J 1994 Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics PA, USA, Augest 7–10, 1994 pp1–5

    [4]

    Xu Y 1991 Ferroelectric Materials and their Applications (Amsterdam: Elsevier) pp1–36

    [5]

    Mikami N 1997 Thin Film Ferroelectric Materials and Devices (Boston, MA: Springer US) pp43–70

    [6]

    Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti Jr G A, Rödel J 2017 Appl. Phys. Rev. 4 041305Google Scholar

    [7]

    Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceramics 11 5Google Scholar

    [8]

    Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. and Technol. 11 1323Google Scholar

    [9]

    Vendik O G, Hollmann E K, Kozyrev A B, Prudan A M 1999 J. Supercond. 12 325Google Scholar

    [10]

    Xi X X, Li H, Si W, Sirenko A A, Akimov I A, Fox J R, Clark A M, Hao J 2000 J. Electroceram. 4 393Google Scholar

    [11]

    Baik S, Setter N, Auciello O 2006 J. Appl. Phys. 100 051501Google Scholar

    [12]

    Korn D S, Wu H D 1999 Integr. Ferroelectr. 24 215Google Scholar

    [13]

    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar

    [14]

    Scott J F 2000 Ferroelectric Memories (Berlin, Heidelberg: Springer) pp1–22

    [15]

    Scheele P, Goelden F, Giere A, Mueller S, Jakoby R 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, CA, USA, June 17, 2005 pp603–606

    [16]

    Deleniv A, Abadei S, Gevorgian S 2003 IEEE MTT-S International Microwave Symposium Digest (Vol. 2), Philadelphia, PA, USA, June 8–13, 2003 p1267

    [17]

    Kuylenstierna D, Vorobiev A, Linner P, Gevorgian S 2006 IEEE Microw. Wirel. Compon. Lett. 16 167Google Scholar

    [18]

    Mahmud A, Kalkur T S, Jamil A, Cramer N 2006 IEEE Microw. Wirel. Compon. Lett. 16 261Google Scholar

    [19]

    Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D Appl. Phys. 41 063001Google Scholar

    [20]

    Cole M W, Ngo E, Hirsch S, Demaree J D, Zhong S, Alpay S P 2007 J. Appl. Phys. 102 034104Google Scholar

    [21]

    Li F, Zhang S, Damjanovic D, Chen L-Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar

    [22]

    Setter N, Cross L E 1980 J. Appl. Phys. 51 4356Google Scholar

    [23]

    Jeong I K, Darling T W, Lee J K, Proffen T, Heffner R H, Park J S, Hong K S, Dmowski W, Egami T 2005 Phys. Rev. Lett. 94 147602Google Scholar

    [24]

    Yao G, Wang X, Wu Y, Li L 2012 J. Am. Ceram. Soc. 95 614Google Scholar

    [25]

    Wang S F, Li J H, Hsu Y F, Wu Y C, Lai Y C, Chen M H 2013 J. Eur. Ceram. Soc. 33 1793Google Scholar

    [26]

    Vendik O G, Zubko S P 2000 J. Appl. Phys. 88 5343Google Scholar

    [27]

    Zhu X H, Meng Q D, Yong L P, He Y S, Cheng B L, Zheng D N 2006 J. Phys. D: Appl. Phys. 39 2282Google Scholar

    [28]

    Kim W J, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 Appl. Phys. Lett. 76 1185Google Scholar

    [29]

    金魁, 吴颉 2021 70 017403Google Scholar

    Jin K, Wu J 2021 Acta Phys. Sin. 70 017403Google Scholar

    [30]

    Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033Google Scholar

    [31]

    Chang W, Kirchoefer S W, Pond J M, Horwitz J S, Sengupta L 2002 J. Appl. Phys. 92 1528Google Scholar

    [32]

    Boikov Y A, Claeson T 2001 Appl. Phys. Lett. 79 2052Google Scholar

    [33]

    Wang H Z, Dong Y X, Zhu R J, Wang Z M, Guo X L, Zhang T, Yuan G L, Kimura H 2019 Ceram. Int. 45 8300Google Scholar

    [34]

    Kim W J, Wu H D, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 J. Appl. Phys. 88 5448Google Scholar

    [35]

    Ding Y P, Wu J S, Meng Z Y, Chan H L, Choy Z L 2002 Mater. Chem. Phys. 75 220Google Scholar

    [36]

    Schimizu T 1997 Solid State Commun. 102 523Google Scholar

    [37]

    Gevorgian S, Petrov P K, Ivanov Z, Wikborg E 2001 Appl. Phys. Lett. 79 1861Google Scholar

    [38]

    Dong H T, Lu G P, Jin D P, Chen J G, Cheng J R 2016 J. Mater. Sci. 51 8414Google Scholar

    [39]

    Zhu R J, Wang Z M, Cheng Z X, Guo X L, Zhang T, Cai Z L, Kimura H, Matsumoto T, Shibata N, Ikuhara Y 2020 Ceram. Int. 46 20284Google Scholar

    [40]

    Cole M W, Ngo E, Hirsch S, Okatan M B, Alpay S P 2008 Appl. Phys. Lett. 92 072906Google Scholar

    [41]

    Marksz E J, Hagerstrom A M, Zhang X, Al Hasan N, Pearson J, Drisko J A, Booth J C, Long C J, Takeuchi I, Orloff N D 2021 Phys. Rev. Appl. 15 064061Google Scholar

Metrics
  • Abstract views:  4056
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2023
  • Accepted Date:  03 March 2023
  • Available Online:  10 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回
Baidu
map