-
铯原子D1 线的非经典光由于其波长接近于量子点的独特优势, 在固态量子信息网络的发展中有着重要的应用前景. 在之前的工作中, 利用两镜连续简并光学参量振荡器中的参量下转换过程, 制备出2.8 dB 正交压缩真空态光场. 然而, 所产生光场的压缩度较低, 对于对压缩光具有实用意义的可调谐性能也未做进一步探究. 理论分析表明, 光学参量振荡器后腔镜对信号光透射率的增加及内腔损耗的减小可以提高压缩度. 因此, 本文在该研究基础上, 通过使用高光洁度腔镜及优化腔镜镀膜参数等方式对光学参量振荡器进行改良, 降低了光学参量腔阈值, 获得压缩度为3.3 dB 的单模正交压缩真空光. 当光学参量腔运转为参量反放大状态时, 在系统稳定运行的情况下, 制备的明亮压缩态光场能够连续调谐80 MHz, 为其在量子信息网络中的应用奠定了良好的基础.The non-classical light resonance on the cesium D1 (894.6 nm) line has important applications in solid-state quantum information networks due to its unique advantages. The cesium D1 line has a simplified hyperfine structure and can be used to realize a light-atom interface. In our previous work, we demonstrated 2.8-dB quadrature squeezed vacuum light at cesium D1 line in an optical parametric oscillator(OPO) with a periodically poled KTP(PPKTP) crystal. However, the squeezing level is relatively low, and the tunability that has practical significance for squeezed light has not been further investigated. Theoretically, the increase of the transmittance of output mirror and the decrease of the intra-cavity loss of the OPO can improve the squeezing level. Here, we use super-polished and optimal coating cavity mirrors to improve the nonlinear process in OPO. We prepare 447.3 nm blue light from 894.6 nm fundamental light by a second harmonic generation cavity (SHG). The SHG is a two-mirror standing-wave cavity with a PPKTP crystal as the nonlinear medium. The power of generated blue laser is 32 mW when the incident infrared power is 120 mW. Using the blue light to pump an OPO, we achieve quadrature squeezed vacuum light at cesium D1 line. The OPO is a two-mirror standing-wave cavity with a PPKTP crystal. The threshold of OPO is reduced to 28 mW. The squeezing level of generated quadrature squeezed vacuum light is increased to 3.3 dB when the pump power is 15 mW. Taking into account the overall detection efficiency, the actual squeezing reaches 5.5 dB. We inject a weak signal beam into the OPO cavity to act as an optical parametric amplifier (OPA), and test the tunability of squeezzed light. The blue light and the squeezed light are tuned by using a low-frequency triangular wave signal to scan the Ti: sapphire laser. Gradually increasing the amplitude of the scanning triangle wave signal, the generated bright squeezed light can be continuously tuned over a range around 80 MHz without losing the stability of the whole system. The generated squeezed light offers the possibility for the efficient coupling between the non-classical source and solid medium in the process of quantum interface.
-
Keywords:
- nonlinear optics /
- quadrature squeezed light field /
- continuously tunable /
- cesium D1 line
[1] Kimble H J 2008 Nature 453 1023Google Scholar
[2] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301Google Scholar
Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301Google Scholar
[3] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3
[4] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar
[5] Mayers D 2001 J. ACM 48 351Google Scholar
[6] Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350Google Scholar
[7] Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Letters 43 5411Google Scholar
[8] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 69 094205Google Scholar
Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar
[9] Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar
[10] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 15 25763
[11] 李强, 邓晓玮, 张强, 苏晓龙 2016 光学学报 36 0427001
Li Q, Deng X W, Zhang Q, Su X L 2016 Acta Optica Sin. 36 0427001
[12] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar
[13] Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar
[14] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[15] Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344Google Scholar
[16] Hétet G, Glockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H-A, Lam P K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 221Google Scholar
[17] Predojević A, Zhai Z, Caballero J M, Mitchell M W 2008 Phys. Rev. A 78 063820Google Scholar
[18] Suzuki S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116Google Scholar
[19] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar
[20] Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar
[21] Pinotsi D, Imamoglu A, 2008 Phys. Rev. Lett. 100 093603Google Scholar
[22] 张岩, 刘晋红, 马荣, 王丹, 韩宇宏, 张俊香 2017 光学学报 37 0519001Google Scholar
Zhang Y, Liu J H, Ma R, Wang D, Han Y H, Zhang J X 2017 Acta Opt. Sin. 37 0519001Google Scholar
[23] 张岩 2017 博士学位论文 (太原: 山西大学)
Zhang Y 2017 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[24] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 69 234204Google Scholar
Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204Google Scholar
[25] Zhang Y, Liu J H, Wu J Z, Ma R, Wang D, Zhang J X 2016 Opt. Express 24 19769Google Scholar
[26] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
[27] Schneider K, Bruckmeier R, Hansen H, Schiller S, Mlynek J 1996 Opt. Letters 21 1396Google Scholar
-
-
[1] Kimble H J 2008 Nature 453 1023Google Scholar
[2] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301Google Scholar
Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301Google Scholar
[3] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3
[4] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar
[5] Mayers D 2001 J. ACM 48 351Google Scholar
[6] Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350Google Scholar
[7] Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Letters 43 5411Google Scholar
[8] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 69 094205Google Scholar
Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar
[9] Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar
[10] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 15 25763
[11] 李强, 邓晓玮, 张强, 苏晓龙 2016 光学学报 36 0427001
Li Q, Deng X W, Zhang Q, Su X L 2016 Acta Optica Sin. 36 0427001
[12] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar
[13] Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar
[14] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[15] Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344Google Scholar
[16] Hétet G, Glockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H-A, Lam P K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 221Google Scholar
[17] Predojević A, Zhai Z, Caballero J M, Mitchell M W 2008 Phys. Rev. A 78 063820Google Scholar
[18] Suzuki S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116Google Scholar
[19] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar
[20] Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar
[21] Pinotsi D, Imamoglu A, 2008 Phys. Rev. Lett. 100 093603Google Scholar
[22] 张岩, 刘晋红, 马荣, 王丹, 韩宇宏, 张俊香 2017 光学学报 37 0519001Google Scholar
Zhang Y, Liu J H, Ma R, Wang D, Han Y H, Zhang J X 2017 Acta Opt. Sin. 37 0519001Google Scholar
[23] 张岩 2017 博士学位论文 (太原: 山西大学)
Zhang Y 2017 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[24] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 69 234204Google Scholar
Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204Google Scholar
[25] Zhang Y, Liu J H, Wu J Z, Ma R, Wang D, Zhang J X 2016 Opt. Express 24 19769Google Scholar
[26] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
[27] Schneider K, Bruckmeier R, Hansen H, Schiller S, Mlynek J 1996 Opt. Letters 21 1396Google Scholar
计量
- 文章访问数: 3812
- PDF下载量: 66
- 被引次数: 0