-
InSe is a typical two-dimensional (2D) layered semiconductor material, which has excellent electrical properties and moderate adjustable band gap. It is found that InSe has an attractive application prospect in optoelectronic devices. However, some studies have shown that InSe in a single selenium vacancy (Vse) system is easily degraded when exposed to the environment of O2 molecule, which seriously affects the application of InSe in the field of electronic devices. In order to improve the environmental stability of the material, the substitution doping method of Te is proposed in this work. Density functional theory (DFT) is used to analyze the electronic structure, adsorption energy, Bader charge and energy reaction paths of the different systems. It is found that Te substitution doping can significantly improve the stability of InSe. At the same time, the defect state produced by Vse can be eliminated. The specific research results are as follows. First, the dissociation barrier of O2 molecule on Te doped InSe surface (InSe—Te) is as high as 2.67 eV, indicating that Te-doped InSe has a strong antioxidant capacity. Second, the distance between O2 molecule and the surface of InSe—Te is 3.87 Å, and the adsorption energy is only –0.03 eV, indicating that O2 molecules are physically adsorbed on the monolayer surface. Third, Te doping not only improves the antioxidant capacity of the InSe, but also eliminates the defect state produced by Vse. Fourth, the Te-doping obviously eliminates the original Vse defect state or impurity band. The density of states and band structure of Te-doped InSe are almost the same as those of perfect InSe, which can maintain the stability of InSe structure and effectively reduce the damage of oxidation environment to defective InSe monolayer. The results of this study will be helpful in improving the environmental stability of InSe 2D material devices and promoting the research and development of InSe 2D devices.
-
Keywords:
- InSe /
- oxidation resistance /
- doping /
- electronic structure
[1] Ang Y S, Cao L M, Ang L K 2021 InfoMat 3 502
Google Scholar
[2] Xu K, Yin L, Huang Y, Shifa T A, Chu J W, Wang F, Cheng R Q, Wang Z X, He J 2016 Nanoscale 8 16802
Google Scholar
[3] Huang W J, Gan L, Li H Q, Ma Y, Zhai T Y 2016 CrystEngComm 18 3968
Google Scholar
[4] Sun Y H, Li Y W, Li T S, Biswas K, Patan A, Zhang L J 2020 Adv. Funct. Mater. 30 2001920
Google Scholar
[5] Ma D W, Ju W W, Tang Y N, Chen Y 2017 Appl. Surf. Sci. 426 244
Google Scholar
[6] Sun C, Xiang H, Xu B, Xia Y D, Yin J, Liu Z G 2016 Appl. Phys. Express 9 035203
Google Scholar
[7] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223
Google Scholar
[8] Dai M J, Gao C F, Nie Q F, Wang Q J, Lin Y F, Chu J H, Li W W 2022 Adv. Mater. Technol. 7 2200321
Google Scholar
[9] Tamalampudi S R, Lu Y Y, Kumar U R, Sankar R, Liao C D, Moorthy B K, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800
Google Scholar
[10] Balakrishnan N, Kudrynskyi Z R, Smith E F, Fay M W, Makarovsky O, Kovalyuk Z D, Eaves L, Beton P H, Patanè A 2017 2D Mater. 4 025043
Google Scholar
[11] Shi L, Zhou Q H, Zhao Y H, Ouyang Y X, Ling C Y, Li Q, Wang J L 2017 J. Phys. Chem. C 8 4368
Google Scholar
[12] Nan H Y, Guo S J, Cai S, Chen Z R, Zafar A, Zhang X M, Gu X F, Xiao S Q, Ni Z H 2018 Semicond. Sci. Tech. 33 074002
Google Scholar
[13] Wang X Y, Nan H Y, Dai W, Lin Q, Liu Z, Gu X F, Ni Z H, Xiao S Q 2019 Appl. Surf. Sci. 467 860
Google Scholar
[14] Yang B C, Wan B S, Zhou Q H, Wang Y, Hu W T, Lyu W M, Chen Q, Zeng Z M, Wen F S, Xiang J Y, Yuan S J, Wang J L, Zhang B S, Wang W H, Zhang J Y, Xu B, Zhao Z S, Tian Y J, Liu Z Y 2016 Adv. Mater. 28 9408
Google Scholar
[15] Rahman R S, Asokan K, Zulfequar M 2022 J. Phys. Chem. C 126 6065
Google Scholar
[16] Li Q, Zheng S X, Pu J B, Wang W Z, Li L, Wang L P 2019 Appl. Surf. Sci. 487 1121
Google Scholar
[17] Ding Y, Wang Y L 2015 J. Phys. Chem. C 119 27848
Google Scholar
[18] Ma D W, Li T X, Yuan D, He C Z, Lu Z, Lu Z S, Yang Z X, Wang Y X 2018 Appl. Surf. Sci. 434 215
Google Scholar
[19] Li X P, Xia C X, Song X H, Du J, Xiong W Q 2017 J. Mater. Sci. 52 7207
Google Scholar
[20] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
Google Scholar
[21] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
Google Scholar
[22] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
Google Scholar
[23] Wei X, Dong C F, Xu A N, Li X G, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238
Google Scholar
[24] Wu X, Vargas M C, Nayak S, Lotrich V, Scoles G 2001 J. Phys. Chem. C 115 8748
Google Scholar
[25] 刘子媛, 潘金波, 张余洋, 杜世萱 2021 70 027301
Google Scholar
Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301
Google Scholar
[26] Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109
Google Scholar
[27] Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615
Google Scholar
[28] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
Google Scholar
[29] Henkelman G, Uberuaga B P, Jónsson H 2000 J. Phys. Chem. C 113 9901
Google Scholar
[30] Kistanov A A, Cai Y Q, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308
Google Scholar
[31] 孙建平, 缪应蒙, 曹相春 2013 62 036301
Google Scholar
Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301
Google Scholar
[32] 林雪玲, 潘凤春 2013 62 166102
Google Scholar
Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102
Google Scholar
[33] 王应, 李勇, 李宗宝 2016 65 037101
Google Scholar
Wang Y, Li Y, Li Z B 2016 Acta Phys. Sin. 65 037101
Google Scholar
[34] Guo Y, Zhou S, Bai Y Z, Zhao J J 2017 J. Phys. Chem. C 147 104709
Google Scholar
[35] Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642
Google Scholar
[36] Meng Y Z, Ling C Y, Xin R, Wang P, Song Y, Bu H J, Gao S, Wang X F, Song F Q, Wang J L, Wang X R, Wang B G, Wang G H 2017 npj Quantum Mater. 2 16
Google Scholar
[37] Wang D, Li X B, Sun H B 2017 Nanoscale 9 11619
Google Scholar
-
图 7 O2吸附于InSe-Vse和InSe-Te的差分电荷密度 (a), (d) InSe-Vse/O2; (b), (e) InSe-Vse@O2; (c), (f) InSe-Te/O2. 分子-表面的差分电荷密度(
$ \Delta \rho $ , 等值面设为0.001e/bohr3), 黄色代表电子积累区域($ \Delta \rho > 0 $ ), 蓝色代表电子缺失区域($ \Delta \rho < 0 $ )Figure 7. Differential charge density of O2 adsorbed on InSe-Vse and InSe-Te: (a), (d) InSe-Vse/O2; (b), (e) InSe-Vse@O2; (c), (f) InSe-Te. Differential charge density of molecular-surface (
$ \Delta \rho $ , the equivalent surface is set to 0.001e/bohr3), yellow represents areas where electrons accumulate ($ \Delta \rho > 0 $ ), blue is the electron missing region ($ \Delta \rho < 0 $ ).表 1 O2分子在InSe-Te表面不同位点的吸附能
Table 1. Adsorption energy of O2 molecule at different sites on InSe-Te surface.
吸附能 吸附位点 $ {T}_{{\rm{T}}{\rm{e}}} $ $ {T}_{{\rm{h}}{\rm{o}}{\rm{l}}{\rm{l}}{\rm{o}}{\rm{w}}} $ $ {T}_{{\rm{I}}{\rm{n}}} $ $ {T}_{{\rm{S}}{\rm{e}}} $ $ {T}_{{\rm{S}}{\rm{e}}-{\rm{T}}{\rm{e}}} $ $ {T}_{{\rm{I}}{\rm{n}}-{\rm{T}}{\rm{e}}} $ $ {E}_{{\rm{a}}{\rm{d}}} $/eV –0.03 –0.07 –0.08 –0.05 –0.07 –0.05 表 2 O2在完美InSe, InSe-Te, InSe-Vse表面的吸附能(
$ {{E}}_{\rm{ad}} $ )、电荷转移量($ {\Delta {n}}_{\rm{e}} $ )、O—O键长(d)以及原子距离高度(h)Table 2. Adsorption energy (
$ {{E}}_{\rm{ad}} $ ), charge transfer ($ {\Delta {n}}_{\rm{e}} $ ), O—O bond length (d) and atomic distance height (h) of O2 on perfect InSe, InSe-Te and InSe-Vse surfaces, respectively. -
[1] Ang Y S, Cao L M, Ang L K 2021 InfoMat 3 502
Google Scholar
[2] Xu K, Yin L, Huang Y, Shifa T A, Chu J W, Wang F, Cheng R Q, Wang Z X, He J 2016 Nanoscale 8 16802
Google Scholar
[3] Huang W J, Gan L, Li H Q, Ma Y, Zhai T Y 2016 CrystEngComm 18 3968
Google Scholar
[4] Sun Y H, Li Y W, Li T S, Biswas K, Patan A, Zhang L J 2020 Adv. Funct. Mater. 30 2001920
Google Scholar
[5] Ma D W, Ju W W, Tang Y N, Chen Y 2017 Appl. Surf. Sci. 426 244
Google Scholar
[6] Sun C, Xiang H, Xu B, Xia Y D, Yin J, Liu Z G 2016 Appl. Phys. Express 9 035203
Google Scholar
[7] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223
Google Scholar
[8] Dai M J, Gao C F, Nie Q F, Wang Q J, Lin Y F, Chu J H, Li W W 2022 Adv. Mater. Technol. 7 2200321
Google Scholar
[9] Tamalampudi S R, Lu Y Y, Kumar U R, Sankar R, Liao C D, Moorthy B K, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800
Google Scholar
[10] Balakrishnan N, Kudrynskyi Z R, Smith E F, Fay M W, Makarovsky O, Kovalyuk Z D, Eaves L, Beton P H, Patanè A 2017 2D Mater. 4 025043
Google Scholar
[11] Shi L, Zhou Q H, Zhao Y H, Ouyang Y X, Ling C Y, Li Q, Wang J L 2017 J. Phys. Chem. C 8 4368
Google Scholar
[12] Nan H Y, Guo S J, Cai S, Chen Z R, Zafar A, Zhang X M, Gu X F, Xiao S Q, Ni Z H 2018 Semicond. Sci. Tech. 33 074002
Google Scholar
[13] Wang X Y, Nan H Y, Dai W, Lin Q, Liu Z, Gu X F, Ni Z H, Xiao S Q 2019 Appl. Surf. Sci. 467 860
Google Scholar
[14] Yang B C, Wan B S, Zhou Q H, Wang Y, Hu W T, Lyu W M, Chen Q, Zeng Z M, Wen F S, Xiang J Y, Yuan S J, Wang J L, Zhang B S, Wang W H, Zhang J Y, Xu B, Zhao Z S, Tian Y J, Liu Z Y 2016 Adv. Mater. 28 9408
Google Scholar
[15] Rahman R S, Asokan K, Zulfequar M 2022 J. Phys. Chem. C 126 6065
Google Scholar
[16] Li Q, Zheng S X, Pu J B, Wang W Z, Li L, Wang L P 2019 Appl. Surf. Sci. 487 1121
Google Scholar
[17] Ding Y, Wang Y L 2015 J. Phys. Chem. C 119 27848
Google Scholar
[18] Ma D W, Li T X, Yuan D, He C Z, Lu Z, Lu Z S, Yang Z X, Wang Y X 2018 Appl. Surf. Sci. 434 215
Google Scholar
[19] Li X P, Xia C X, Song X H, Du J, Xiong W Q 2017 J. Mater. Sci. 52 7207
Google Scholar
[20] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
Google Scholar
[21] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
Google Scholar
[22] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
Google Scholar
[23] Wei X, Dong C F, Xu A N, Li X G, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238
Google Scholar
[24] Wu X, Vargas M C, Nayak S, Lotrich V, Scoles G 2001 J. Phys. Chem. C 115 8748
Google Scholar
[25] 刘子媛, 潘金波, 张余洋, 杜世萱 2021 70 027301
Google Scholar
Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301
Google Scholar
[26] Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109
Google Scholar
[27] Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615
Google Scholar
[28] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
Google Scholar
[29] Henkelman G, Uberuaga B P, Jónsson H 2000 J. Phys. Chem. C 113 9901
Google Scholar
[30] Kistanov A A, Cai Y Q, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308
Google Scholar
[31] 孙建平, 缪应蒙, 曹相春 2013 62 036301
Google Scholar
Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301
Google Scholar
[32] 林雪玲, 潘凤春 2013 62 166102
Google Scholar
Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102
Google Scholar
[33] 王应, 李勇, 李宗宝 2016 65 037101
Google Scholar
Wang Y, Li Y, Li Z B 2016 Acta Phys. Sin. 65 037101
Google Scholar
[34] Guo Y, Zhou S, Bai Y Z, Zhao J J 2017 J. Phys. Chem. C 147 104709
Google Scholar
[35] Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642
Google Scholar
[36] Meng Y Z, Ling C Y, Xin R, Wang P, Song Y, Bu H J, Gao S, Wang X F, Song F Q, Wang J L, Wang X R, Wang B G, Wang G H 2017 npj Quantum Mater. 2 16
Google Scholar
[37] Wang D, Li X B, Sun H B 2017 Nanoscale 9 11619
Google Scholar
Catalog
Metrics
- Abstract views: 4311
- PDF Downloads: 96
- Cited By: 0