Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physico-chemical mechanism of surface dielectric barrier discharge product change based on spectral diagnosis

Liu Kun Zuo Jie Zhou Xiong-Feng Ran Cong-Fu Yang Ming-Hao Geng Wen-Qiang

Citation:

Physico-chemical mechanism of surface dielectric barrier discharge product change based on spectral diagnosis

Liu Kun, Zuo Jie, Zhou Xiong-Feng, Ran Cong-Fu, Yang Ming-Hao, Geng Wen-Qiang
PDF
HTML
Get Citation
  • To gain an insight into the interaction mechanism among the gaseous products of atmospheric pressure air plasma, a surface dielectric barrier discharge is used as a study object. The dynamic processes of characteristic products (nitric oxide NO and ozone O3) are measured by in-situ Fourier infrared spectroscopy and UV absorption spectroscopy. The real energy density of the plasma is calculated by Lissajous figure and ICCD optical image. The gas temperature is obtained by fitting the emission spectrum of the second positive band of the nitrogen molecule. The results show that the real energy density and gas temperature are highly positively correlated with the applied voltage and frequency. Higher applied voltages and frequencies can lead to lower peak absorbance of O3 and higher absorbance of NO, and accelerate the conversion of the products from O3-containing state into O3-free state. The microscopic mechanism of the product change is revealed by analyzing the effects of the real energy density and gas temperature on the major generation and quenching chemical reactions of the characteristic products. The analysis points out that there are two major reasons for the disappearance of O3, i.e. the quenching effect of O and O/O2 excited state particles on O3 and the quenching effect of NO on O3. And the mechanism that the disappearance of O3 accelerates with the increase of energy density and gas temperature, is as follows. The increase of real energy density means that the energy injected into the discharge region is enhanced, which intensifies the collision reaction, thereby producing more energetic electrons and reactive oxygen and nitrogen particles. Since the discharge cavity is gas-tight, the rapid generation of O leads to a rapid increase in the ratio of O to O2, which accelerates the decomposition of O3; besides, the gas temperature is raised due to the intensification of the collision reaction. Whereas the gas temperature can change the rate coefficients of the chemical reactions involving the excited state particles of nitrogen and oxygen to regulate the production and quenching of the products. The increase of gas temperature has a negative effect on O3. The higher the gas temperature, the lower the rate of O3 generation reaction is but the higher the rate of dissociation, which is thought to be the endogenous cause of the rapid disappearance of O3. In contrast, the gas temperature rising can significantly elevate the reaction rate of NO production and reduces its dissociation rate. This contributes to the faster production of massive NO, resulting in an accelerated quenching process of NO to O3, which can be considered as the exogenous cause of the rapid disappearance of O3. In a word, the present study contributes to a better understanding of the physico-chemical process in atmospheric pressure low-temperature plasma.
      Corresponding author: Liu Kun, liukun@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51877021).
    [1]

    Liu K, Hu Y, Lei J 2017 Phys. Plasmas 24 103513Google Scholar

    [2]

    商克峰, 王美威, 鲁娜, 姜楠, 李杰, 吴彦 2021 高电压技术 47 353Google Scholar

    Shang K F, Wang M W, Lu N, Jiang N, Li J, Wu Y 2021 High Volt. Eng. 47 353Google Scholar

    [3]

    王兴生, 马彦明, 高勋, 林景全 2020 69 029502Google Scholar

    Wang X S, Ma Y M, Gao X, Lin J Q 2020 Acta Phys. Sin. 69 029502Google Scholar

    [4]

    Liu K, Zheng Z F, Liu S T, Hu Y Y 2019 Plasma Chem. Plasma Process. 39 1255Google Scholar

    [5]

    高书涵, 王绪成, 张远涛 2020 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [6]

    Pang B L, Liu Z J, Zhang H Y, Wang S T, Gao Y T, Xu D H, Liu D X, Kong M G 2022 Plasma Process. Polym. 19 e2100079Google Scholar

    [7]

    Zhao Z L, Wang W C, Yang D Z, Zhou X F, Yuan H 2019 IEEE Trans. Plasma Sci. 47 4219Google Scholar

    [8]

    Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D Appl. Phys. 55 265202Google Scholar

    [9]

    Jiang N, Kong X Q, Lu X L, Peng B F, Liu Z Y, Li J, Shang K F, Lu N, Wu Y 2022 J. Clean. Prod. 332 129998Google Scholar

    [10]

    Dascalu A, Pohoata V, Shimizu K, Sirghi L 2021 Plasma Chem. Plasma Process. 41 389Google Scholar

    [11]

    Park S, Choe W, Jo C 2018 Chem. Eng. J. 352 1014Google Scholar

    [12]

    Douat C, Hubner S, Engeln R, Benedikt J 2016 Plasma Sources Sci. Technol. 25 025027Google Scholar

    [13]

    Qin H B, Qiu H J, He S T, Hong B X, Liu K, Lou F X, Li M C, Hu P, Kong X H, Song Y J, Liu Y C, Pu M F, Han P J, Li M Z, An X P, Song L H, Tong Y G, Fan H H, Wang R X 2022 J. Hazard. Mater. 430 128414Google Scholar

    [14]

    Wang S T, Liu Z J, Pang B L, Gao Y T, Luo S T, Li Q S, Chen H L, Kong M G 2022 Appl. Phys. Lett. 121 144101Google Scholar

    [15]

    Shimizu T, Ikehara 2017 J. Phys. D Appl. Phys. 50 503001Google Scholar

    [16]

    Shimizu T, Sakiyama Y, Graves D B, Zimmermann J L, Morfill G E 2012 New J. Phys. 14 103028Google Scholar

    [17]

    Pavlovich M J, Clark D S, Graves D B 2014 Plasma Sources Sci. Technol. 23 065036Google Scholar

    [18]

    Xi W, Wang W, Liu Z J, Wang Z F, Guo L, Wang X H, Rong M Z, Liu D X 2020 Plasma Sources Sci. Technol. 29 095013Google Scholar

    [19]

    Waskow A, Ibba L, Leftley M, Howling A, Ambrico P F, Furno I 2021 Int. J. Mol. Sci. 22 11540Google Scholar

    [20]

    万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 69 145203Google Scholar

    Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203Google Scholar

    [21]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [22]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D:Appl. Phys. 54 065201Google Scholar

    [23]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [24]

    Liu K, Duan Q S, Zheng Z F, Zhou R S, Zhou R W, Tang W B, Cullen P, Ostrikov K 2021 Plasma Process. Polym. 18 2100016Google Scholar

    [25]

    Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar

    [26]

    高坤, 弓丹丹, 刘仁静, 苏泽华, 贾鹏英, 李雪辰 2020 光谱学与光谱分析 40 461Google Scholar

    Gao K, Gong D D, Liu R J, Su Z H, Jia P Y, Li X C 2020 Spectrosc. Spect. Anal. 40 461Google Scholar

    [27]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D Appl. Phys. 45 425201Google Scholar

    [28]

    Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Collins G J, Lee J K 2012 Plasma Sources Sci. Technol. 21 043001Google Scholar

    [29]

    李森, 王小兵, 马婷婷, 李栋, 戴健男 2021 真空科学与技术学报 41 619Google Scholar

    Li S, Wang X B, Ma T T, Li D, Dai J N 2021 Chin. J. Vac. Sci. Technol. 41 619Google Scholar

    [30]

    Yin S E, Sun B M, Gao X D, Xiao H P 2009 Plasma Chem. Plasma Process. 29 421Google Scholar

    [31]

    Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process. Polym. 16 e1900001Google Scholar

    [32]

    陈忠琪, 钟安, 戴栋, 宁文军 2022 71 165201Google Scholar

    Chen Z Q, Zhong A, Dai D, Ning W J 2022 Acta Phys. Sin. 71 165201Google Scholar

    [33]

    Eliasson B, Hirth M, Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421Google Scholar

    [34]

    Vervloessem E, Aghaei M, Jardali F, Hafezkhiabani N, Bogaerts A 2020 ACS Sustainale Chem. Eng. 8 9711Google Scholar

    [35]

    Gordillo-Vazquez F J 2008 J. Phys. D Appl. Phys. 41 234016Google Scholar

    [36]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

  • 图 1  (a)实验装置; (b)气体温度拟合

    Figure 1.  (a) Experimental setup; (b) gas temperature fitting.

    图 2  放电6 kHz, 6 kV条件时的原位FTIR结果

    Figure 2.  In-situ FTIR results with discharge at 6 kHz, 6 kV.

    图 3  特征产物随电压和频率的变化

    Figure 3.  Variation of the characteristic products with voltage and frequency.

    图 4  SDBD放电图像 (a) 6 kHz, 5.5 kV; (b) 6 kHz, 6.0 kV; (c) 6 kHz, 6.5 kV; (d) 6 kHz, 7.0 kV; (e) 7 kHz, 5.5 kV; (f) 8 kHz, 5.5 kV; (g) 9 kHz, 5.5 kV; (h) 10 kHz, 5.5 kV

    Figure 4.  SDBD discharge images: (a) 6 kHz, 5.5 kV; (b) 6 kHz, 6.0 kV; (c) 6 kHz, 6.5 kV; (d) 6 kHz, 7.0 kV; (e) 7 kHz, 5.5 kV; (f) 8 kHz, 5.5 kV; (g) 9 kHz, 5.5 kV; (h) 10 kHz, 5.5 kV.

    图 5  放电面积、能量和能量密度随电压和频率的变化 (a)频率为变量; (b)电压为变量

    Figure 5.  Variations of discharge area, energy and energy density with voltage and frequency: (a) Frequency as variable; (b) voltage as variable.

    图 6  气体温度随电压和频率的变化 (a)电压为变量; (b)频率为变量

    Figure 6.  Variation of gas temperature with voltage and frequency: (a) Voltage as variable; (b) frequency as variable.

    表 1  FTIR中不同物质对应的吸收峰波数

    Table 1.  Absorption peak wavenumber of differentspecies in FTIR.

    化学产物波数/cm–1
    N2O589, 1285, 2224, 2237
    N2O5743, 880, 1247, 1355, 1720
    HNO3762, 896, 1313, 1341, 1700
    O31030, 1043, 1055, 2098, 2121
    NO21600, 1621, 1627
    NO1876
    DownLoad: CSV

    表 2  空气放电中的主要化学反应

    Table 2.  Main chemical reactions in air discharge.

    化学反应速率系数k编号文献
    e + N2 → N(2D) + N + e3.99 × 10–17 ε2.24 exp(–9.10/ε)R1[27]
    e + N2 → N2(v) + eBOLSIG+R2[34]
    e + O2 → O + O + e2.03 × 10–14 ε–0.10 exp(–8.47/ε)R3[27]
    e + O2 →O(1D) + O + e1.82 × 10–14 ε–0.13 exp(–10.70/ε)R4[27]
    e + O2 → O2(a) + e1.04 × 10–15 exp(–2.59/ε)R5[27]
    O + O2+ N2 → O3 + N25.8 × 10–34 × (300/Tg)2.8R6[35]
    O + O2+ O2 → O3 + O27.6 × 10–34 × (300/Tg)1.9R7[35]
    O + O3 → O2 + O22 × 10–11 exp(–2300/Tg)R8[35]
    O + O3 → O2 + O2(a)2.0 × 10–11 exp(–2280/Tg)R9[34]
    O2(a) + O3 → O2 + O2 + O(1D)5.20 × 10–11 exp(–2480/Tg)R10[35]
    O2(a) + O3 → O + O2 + O25.20 × 10–11 exp(–2480/Tg)R11[35]
    O(1D) + O3 → O2 + O + O1.20 × 10–10R12[36]
    NO + O3 → O2 + NO24.30 × 10–12 exp(–1560/Tg)R13[36]
    O + NO2 → NO + O29.10 × 10–12 × (Tg/300)0.18R14[35]
    O + N2(v) → N + NO3.01 × 10–10 exp(–38370/Tg)R15[34]
    N + O3 → NO + O25.00 × 10–12 exp(–650/Tg)R16[34]
    N + O2 → O + NO1.0 × 10–11 × exp(–3473/Tg)R17[35]
    N + O2(a) → NO + O2.00 × 10–14 exp(–600/Tg)R18[35]
    N(2D) + O2 → NO + O1.50 × 10–12 exp(Tg/300)0.5R19[36]
    N(2D) + N2O → N2 + NO1.50 × 10–17 exp(–570/Tg)R20[27]
    N(2D) + O2 →NO + O(1D)6.00 × 10–12 exp(Tg/300)0.5R21[36]
    O + NO + N2 → NO2 + N21.20 × 10–31 × (300/Tg)1.7R22[35]
    O + NO + O2 → NO2 + O29.36 × 10–32 × (300/Tg)1.7R23[35]
    注: 二元反应和三元反应的速率系数单位分别为m3/s, m6/s.
    DownLoad: CSV
    Baidu
  • [1]

    Liu K, Hu Y, Lei J 2017 Phys. Plasmas 24 103513Google Scholar

    [2]

    商克峰, 王美威, 鲁娜, 姜楠, 李杰, 吴彦 2021 高电压技术 47 353Google Scholar

    Shang K F, Wang M W, Lu N, Jiang N, Li J, Wu Y 2021 High Volt. Eng. 47 353Google Scholar

    [3]

    王兴生, 马彦明, 高勋, 林景全 2020 69 029502Google Scholar

    Wang X S, Ma Y M, Gao X, Lin J Q 2020 Acta Phys. Sin. 69 029502Google Scholar

    [4]

    Liu K, Zheng Z F, Liu S T, Hu Y Y 2019 Plasma Chem. Plasma Process. 39 1255Google Scholar

    [5]

    高书涵, 王绪成, 张远涛 2020 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [6]

    Pang B L, Liu Z J, Zhang H Y, Wang S T, Gao Y T, Xu D H, Liu D X, Kong M G 2022 Plasma Process. Polym. 19 e2100079Google Scholar

    [7]

    Zhao Z L, Wang W C, Yang D Z, Zhou X F, Yuan H 2019 IEEE Trans. Plasma Sci. 47 4219Google Scholar

    [8]

    Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D Appl. Phys. 55 265202Google Scholar

    [9]

    Jiang N, Kong X Q, Lu X L, Peng B F, Liu Z Y, Li J, Shang K F, Lu N, Wu Y 2022 J. Clean. Prod. 332 129998Google Scholar

    [10]

    Dascalu A, Pohoata V, Shimizu K, Sirghi L 2021 Plasma Chem. Plasma Process. 41 389Google Scholar

    [11]

    Park S, Choe W, Jo C 2018 Chem. Eng. J. 352 1014Google Scholar

    [12]

    Douat C, Hubner S, Engeln R, Benedikt J 2016 Plasma Sources Sci. Technol. 25 025027Google Scholar

    [13]

    Qin H B, Qiu H J, He S T, Hong B X, Liu K, Lou F X, Li M C, Hu P, Kong X H, Song Y J, Liu Y C, Pu M F, Han P J, Li M Z, An X P, Song L H, Tong Y G, Fan H H, Wang R X 2022 J. Hazard. Mater. 430 128414Google Scholar

    [14]

    Wang S T, Liu Z J, Pang B L, Gao Y T, Luo S T, Li Q S, Chen H L, Kong M G 2022 Appl. Phys. Lett. 121 144101Google Scholar

    [15]

    Shimizu T, Ikehara 2017 J. Phys. D Appl. Phys. 50 503001Google Scholar

    [16]

    Shimizu T, Sakiyama Y, Graves D B, Zimmermann J L, Morfill G E 2012 New J. Phys. 14 103028Google Scholar

    [17]

    Pavlovich M J, Clark D S, Graves D B 2014 Plasma Sources Sci. Technol. 23 065036Google Scholar

    [18]

    Xi W, Wang W, Liu Z J, Wang Z F, Guo L, Wang X H, Rong M Z, Liu D X 2020 Plasma Sources Sci. Technol. 29 095013Google Scholar

    [19]

    Waskow A, Ibba L, Leftley M, Howling A, Ambrico P F, Furno I 2021 Int. J. Mol. Sci. 22 11540Google Scholar

    [20]

    万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 69 145203Google Scholar

    Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203Google Scholar

    [21]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [22]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D:Appl. Phys. 54 065201Google Scholar

    [23]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [24]

    Liu K, Duan Q S, Zheng Z F, Zhou R S, Zhou R W, Tang W B, Cullen P, Ostrikov K 2021 Plasma Process. Polym. 18 2100016Google Scholar

    [25]

    Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar

    [26]

    高坤, 弓丹丹, 刘仁静, 苏泽华, 贾鹏英, 李雪辰 2020 光谱学与光谱分析 40 461Google Scholar

    Gao K, Gong D D, Liu R J, Su Z H, Jia P Y, Li X C 2020 Spectrosc. Spect. Anal. 40 461Google Scholar

    [27]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D Appl. Phys. 45 425201Google Scholar

    [28]

    Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Collins G J, Lee J K 2012 Plasma Sources Sci. Technol. 21 043001Google Scholar

    [29]

    李森, 王小兵, 马婷婷, 李栋, 戴健男 2021 真空科学与技术学报 41 619Google Scholar

    Li S, Wang X B, Ma T T, Li D, Dai J N 2021 Chin. J. Vac. Sci. Technol. 41 619Google Scholar

    [30]

    Yin S E, Sun B M, Gao X D, Xiao H P 2009 Plasma Chem. Plasma Process. 29 421Google Scholar

    [31]

    Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process. Polym. 16 e1900001Google Scholar

    [32]

    陈忠琪, 钟安, 戴栋, 宁文军 2022 71 165201Google Scholar

    Chen Z Q, Zhong A, Dai D, Ning W J 2022 Acta Phys. Sin. 71 165201Google Scholar

    [33]

    Eliasson B, Hirth M, Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421Google Scholar

    [34]

    Vervloessem E, Aghaei M, Jardali F, Hafezkhiabani N, Bogaerts A 2020 ACS Sustainale Chem. Eng. 8 9711Google Scholar

    [35]

    Gordillo-Vazquez F J 2008 J. Phys. D Appl. Phys. 41 234016Google Scholar

    [36]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

  • [1] Tang Yuan-He, Wang Shu-Hua, Cui Jin, Xu Ying, Mei Yi-Feng, Li Cun-Xia. Study on the forward of mashgas CO temperature and concentration by the remote passive measurement. Acta Physica Sinica, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [2] Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Du Yan-Jun, Peng Zhi-Min. Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [3] Song Jun-Ling, Hong Yan-Ji, Wang Guang-Yu, Pan Hu. Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [4] Dong Li-Fang, Li Shu-Feng, Fan Wei-Li. Defects in transition between different filament structures in dielectric barrier discharge. Acta Physica Sinica, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [5] Liu Wei-Yuan, Yue Han, Wang Shuai, Liu Zhong-Wei, Chen Qiang, Dong Li-Fang, Yang Yu-Jie. Characteristics of dielectric barrier discharge with different dielectric layer structures. Acta Physica Sinica, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [6] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [7] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [8] Wang Li-Ming, Liang Zhuo, Guan Zhi-Cheng, Luo Hai-Yun, Wang Xin-Xin. Influences of gas flow on gas temperature and discharge mode in dielectric barrier discharge of nitrogen at atmospheric pressure. Acta Physica Sinica, 2010, 59(12): 8739-8746. doi: 10.7498/aps.59.8739
    [9] Dong Li-Fang, Yang Li, Li Yong-Hui, Zhang Yan-Zhao, Yue Han. Spatial distributions of the intensity of luminescence and the vibrational temperature of single micro-discharge channel in air dielectric barrier discharge. Acta Physica Sinica, 2009, 58(12): 8461-8466. doi: 10.7498/aps.58.8461
    [10] Dong Li-Fang, Wang Hong-Fang, Liu Wei-Li, He Ya-Feng, Liu Fu-Cheng, Liu Shu-Hua. Influence of dielectric parameters on temporal behavior of dielectric barrier discharge. Acta Physica Sinica, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [11] Tong Kai, Cui Wei-Wei, Wang Mei-Ting, Li Zhi-Quan. Temperature measurement with one dimensional defect photonic crystal. Acta Physica Sinica, 2008, 57(2): 762-766. doi: 10.7498/aps.57.762
    [12] Li Xue-Chen, Jia Peng-Ying, Liu Zhi-Hui, Li Li-Chun, Dong Li-Fang. Study on the transition from filamentary to uniform discharge in dielectric barrier discharge. Acta Physica Sinica, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [13] Investigation on power transfer in dielectric barrier discharge. Acta Physica Sinica, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [14] Wang Yan-Hui, Wang De-Zhen. Characteristics of dielectric barrier homogenous discharge at atmospheric pressure in nitrogen. Acta Physica Sinica, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [15] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [16] Liu Yan-Hong, Zhang Jia-Liang, Wang Wei-Guo, Li Jian, Liu Dong-Ping, Ma Teng-Cai. Deposition of diamond-like carbon and analysis of ion energy in CH4 or CH4+Ar dielectric barrier discharge plasma. Acta Physica Sinica, 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [17] Dong Li-Fang, Mao Zhi-Guo, Ran Jun-Xia. Study on the electrical characteristic of different modes of dielectric barrier discharge in argon. Acta Physica Sinica, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [18] Yin Zeng-Qian, Wang Long, Dong Li-Fang, Li Xue-Chen, Chai Zhi-Fang. The mapping equation of micro-discharge in dielectric barrier discharges. Acta Physica Sinica, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
    [19] CHENG CHENG, SUN WEI. RADIAL DISTRIBUTION AND TIME VARIATION OF GAS TEMPERATURE IN CuBr LASERS. Acta Physica Sinica, 1993, 42(11): 1779-1785. doi: 10.7498/aps.42.1779
    [20] ZHANG CAI-GEN. THE MEASUREMENT OF THE TRUE SURFACE TEMPERATURE VIA THE BRIGHTNESS METHOD. Acta Physica Sinica, 1982, 31(9): 1191-1197. doi: 10.7498/aps.31.1191
Metrics
  • Abstract views:  3751
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2022
  • Accepted Date:  22 December 2022
  • Available Online:  29 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回
Baidu
map