-
Measuring the temperature in vacuum environment is more complex than in atmospheric environment. For example, high vacuum will cause the thermocouple sensor surface desorption, and the mechanism of heat transfer is also different. Therefore, there are some uncertainties if the thermocouple is used to measure the gas temperature in vacuum condition. In the present paper, tunable diode laser absorption spectroscopy (TDLAS) is employed to measure the gas temperature and also explore the application prospect of TDLAS temperature measurement technology in vacuum environment. During the thermal vacuum experiments, the vacuum gas cell is immersed in the thermostatic bath, and the gas temperature is determined by TDLAS. Meanwhile, a standard Pt-resistance is used to measure the thermostatic bath temperature. The results show that the temperatures of the gas and thermostatic bath are highly consistent with each other, and the difference between the two temperatures is less than 0.2 ℃ when the thermostatic bath is stable.
-
Keywords:
- tunable diode laser absorption spectroscopy /
- temperature measurement /
- vacuum environment /
- wavelength modulation spectroscopy
[1] Nabil M, Khodadadi J M 2013 Int. J. Heat Mass Trans. 67 301
[2] Çakmak H M, Çetinkara H A, Kahraman S, Bayansal F, Tepe M, Gder H S, Çipiloğlu M A 2012 Superlattice Microst. 51 421
[3] Zhou H J, Chen X M, Yang B, Li L, Dai Y N 2012 Chin. J. Vacuum Sci. Technol. 32 896 (in Chinese) [周厚军, 陈秀敏, 杨斌, 李亮, 戴永年 2012 真空科学与技术学报 32 896]
[4] Lin M Y, Chen E T, Zhou B, Xu B 2006 Chin. J. Va-cuum Sci. Technol. 26 530 (in Chinese) [林美英, 陈儿同, 周冰, 徐波 2006 真空科学与技术学报 26 530]
[5] Liu R, Zhou Z N, Yin Y L, Yang L, Zhang T L 2012 Thermochim. Acta 537 13
[6] Liu Q 2006 Vacuum Cryogenic 12 238 (in Chinese) [刘强 2006 真空与低温 12 238]
[7] Guo G 2009 Spacecraft Environment Engineering 26 33 (in Chinese) [郭赣 2009 航天器环境工程 26 33]
[8] Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 60 104702]
[9] Peng Z M, Ding Y J, Zhai X D, Yang Q S, Jiang Z L 2011 Chin. Phys. Lett. 28 044703
[10] Cai T D, Jia H, Wang G S, Chen W D, Gao X M 2009 Sensor Actuat. A: Phys. 152 5
[11] Farooq A, Jeffries J B, Hanson R K 2009 Appl. Phys. B 96 161
[12] Teichert H, Fernholz T, Ebert V 2003 Appl. Opt. 42 2043
[13] Li F, Yu X L, Gu H B, Li Z, Zhao Y, Ma L, Chen L H, Zhang X Y 2011 Appl. Opt. 50 6697
[14] Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2006 Appl. Phys. B 82 469
[15] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]
[16] Farooq A, Jeffries J B, Hanson R K 2008 Appl. Phys. B 90 619
[17] Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546
[18] Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976
[19] Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803
[20] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503
[21] Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104
-
[1] Nabil M, Khodadadi J M 2013 Int. J. Heat Mass Trans. 67 301
[2] Çakmak H M, Çetinkara H A, Kahraman S, Bayansal F, Tepe M, Gder H S, Çipiloğlu M A 2012 Superlattice Microst. 51 421
[3] Zhou H J, Chen X M, Yang B, Li L, Dai Y N 2012 Chin. J. Vacuum Sci. Technol. 32 896 (in Chinese) [周厚军, 陈秀敏, 杨斌, 李亮, 戴永年 2012 真空科学与技术学报 32 896]
[4] Lin M Y, Chen E T, Zhou B, Xu B 2006 Chin. J. Va-cuum Sci. Technol. 26 530 (in Chinese) [林美英, 陈儿同, 周冰, 徐波 2006 真空科学与技术学报 26 530]
[5] Liu R, Zhou Z N, Yin Y L, Yang L, Zhang T L 2012 Thermochim. Acta 537 13
[6] Liu Q 2006 Vacuum Cryogenic 12 238 (in Chinese) [刘强 2006 真空与低温 12 238]
[7] Guo G 2009 Spacecraft Environment Engineering 26 33 (in Chinese) [郭赣 2009 航天器环境工程 26 33]
[8] Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 60 104702]
[9] Peng Z M, Ding Y J, Zhai X D, Yang Q S, Jiang Z L 2011 Chin. Phys. Lett. 28 044703
[10] Cai T D, Jia H, Wang G S, Chen W D, Gao X M 2009 Sensor Actuat. A: Phys. 152 5
[11] Farooq A, Jeffries J B, Hanson R K 2009 Appl. Phys. B 96 161
[12] Teichert H, Fernholz T, Ebert V 2003 Appl. Opt. 42 2043
[13] Li F, Yu X L, Gu H B, Li Z, Zhao Y, Ma L, Chen L H, Zhang X Y 2011 Appl. Opt. 50 6697
[14] Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2006 Appl. Phys. B 82 469
[15] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]
[16] Farooq A, Jeffries J B, Hanson R K 2008 Appl. Phys. B 90 619
[17] Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546
[18] Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976
[19] Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803
[20] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503
[21] Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104
Catalog
Metrics
- Abstract views: 7487
- PDF Downloads: 597
- Cited By: 0