-
Entanglement between a photon and an atomic memory is an important tool for quantum repeater research. By using the Duan-Lukin-Cirac-Zoller (DLCZ) process in the atomic ensemble, quantum entanglement between a photon and an atomic spin-wave memory is produced. With the further development of quantum information, it is necessary to put forward higher requirements for the diversity and controllability of quantum memory. In this work, we experimentally demonstrate an optical memory in cold atomic ensemble with enhanced fiber-cavity and high-fidelity optical memory for the first time. We design a fiber cavity to enhance the coupling strength between light and atomic ensemble and then improve the optical retrieval efficiency. Unfortunately, the use of fiber cavity may lead to the decrease of fidelity. Therefore, it is vital to realize high fidelity in the enhanced fiber-cavity optical memory. The cavity has a round-trip length of 1.5 m and a free spectral range of 190 MHz. The finesse (F) of the cavity with the cold atoms in the DLCZ condition is measured to be
$ \sim $ 18. In cavity-enhanced DLCZ scheme, we use a fiber cavity instead of a stationary cavity. If a stationary cavity is used, the signal light will be reflected by the end mirror of the cavity and then pass back through the atoms. The storage of the backward signal light will generate a short-wavelength spin wave and then lead to a rapid decoherence of the memory. When cavity is locked by using the PDH frequency locking technique, we observe that the production probability of the Stokes photons is increased by 4.6 times higher than that without cavity and retrieval efficiency of atomic spin wave is increased by 1.6 times that without cavity due to the optical cavity enhancement effect. The presented cavity-enhanced storage shows that the retrieval efficiency is$ \sim $ 22%, corresponding to an intrinsic retrieval efficiency of$ \sim $ 40%, at the same time the fidelity of the quantum state is$ \sim $ 92%. The accomplishment of this project will provide another effective way of realizing long-distance quantum communication and large-scale quantum network construction.-
Keywords:
- Duan-Lukin-Cirac-Zoller protocol /
- iber cavity /
- cavity-enhanced optical memory /
- high fidelity
[1] Kimble H J 2008 Nature 453 1023Google Scholar
[2] Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288Google Scholar
[3] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar
[4] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar
[5] Simon C 2017 Nature Photon. 11 678Google Scholar
[6] Matsukevich D N, Chaneliere T, Bhattacharya M, Lan S Y, Jenkins S D, Kennedy T A B, Kuzmich A 2005 Phys. Rev. Lett. 95 040405Google Scholar
[7] de Riedmatten H, Laurat J, Chou C W, Schomburg E W, Felinto D, Kimble H J 2006 Phys. Rev. Lett. 97 113603Google Scholar
[8] Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar
[9] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9 332Google Scholar
[10] Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Yuan H X, Wen Y F, Wang H, Xie C D, Peng K C 2016 Phys. Rev. A 93 052327Google Scholar
[11] Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W, 2007 Phys. Rev. Lett. 98 240502Google Scholar
[12] Chen Z B, Zhao B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. A 76 022329Google Scholar
[13] Bussieres F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar
[14] Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301Google Scholar
[15] Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar
[16] Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nature Photon. 13 346Google Scholar
[17] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nature Photon. 10 381Google Scholar
[18] Bao X H, Reingruber A, Dietrich P, Rui J, Duck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nature Phys. 8 517Google Scholar
[19] Yang S J, Wang X J, Li J, Rui J, Bao X H, J W Pan 2015 Phys. Rev. Lett. 114 210501Google Scholar
[20] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar
[21] Afzelius M, Simon C 2010 Phys. Rev. A 82 022310Google Scholar
[22] Sabooni M, Li Q, Kröll S, Rippe L 2013 Phys. Rev. Lett. 110 133604Google Scholar
[23] Jobez P, Usmani I, Timoney N, Laplane C, Gisin N, Afzelius M 2014 New J. Phys. 16 083005Google Scholar
[24] Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar
[25] 袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海 2021 70 070302Google Scholar
Yuan L, Wen Y F, Li Y, Liu C, Li S J, Xu Z X, Wang H 2021 Acta Phys. Sin. 70 070302Google Scholar
[26] Wen Y F, Zhou P, Xu Z X, Yuan L, Wang M J, Wang S Z, Chen L R, Wang H 2020 Opt. Express 28 360Google Scholar
[27] Nikolett N, Donald W, Shinya K, Scott P, Takao A 2020 Phys. Rev. Appl. 13 064010Google Scholar
[28] Zeeb S, Noh C, Parkins A S, Carmichael H J 2015 Phys. Rev. A 91 023829Google Scholar
[29] Huang H, Lehmann K K 2007 Opt. Express 15 8745Google Scholar
[30] 周继阳, 李强, 许金时, 李传锋, 郭光灿 2022 71 060303Google Scholar
Zhou J Y, Li Q, Xu J S, Li C F, Guo G G 2022 Acta Phys. Sin. 71 060303Google Scholar
[31] Wen Y F, Zhou P, Xu Z X, Yuan L, Zhang H Y, Wang S Z, Tian L, Li S J, Wang H 2019 Phys. Rev. A 100 012342Google Scholar
[32] Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang S Z, Li S J, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar
[33] White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar
[34] James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312Google Scholar
-
图 1 (a) 实验装置图; (b) 87Rb原子实验能级图(PBS, 偏振分束棱镜; D(PD1), 单光子探测器(探测器); HWP, 1/2波片; QWP, 1/4波片; Etalon, F-P标准具滤波器; HR1—HR3, 高反射镜; BF, 窄带滤波片; BS, 非偏振分束镜; PR, 部分反射镜; 80/20 FC, 分光比80∶20光纤耦合器; AOM, 声光调制器; PC, 相位补偿器;
$ {\sigma ^ + } $ ($ {\sigma ^ - } $ )为右旋(左旋)圆偏振的出射光子; W(R)为写(读)光场)Figure 1. (a) Experimental setup; (b) experimental energy levels of 87Rb atomic (PBS, polarization beam splitter; D(PD1), single photon detector (detector); HWP, half wave plate; QWP, quarter wave plate; Etalon, F-P Etalon; HR1—HR3, highly reflecting mirrors; BF, bandpass filter; BS, nonpolarizing beamsplitter; PR, partially reflecting mirror; 80/20 FC, 80∶20 fiber coupler; AOM, acousto optic modulator; PC, phase compensators;
$ {\sigma ^ + } $ ($ {\sigma ^ - } $ ) represents right (left) polarization of emitted photon; W(R) represents writing (reading) field). -
[1] Kimble H J 2008 Nature 453 1023Google Scholar
[2] Wehner S, Elkouss D, Hanson R 2018 Science 362 eaam9288Google Scholar
[3] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar
[4] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar
[5] Simon C 2017 Nature Photon. 11 678Google Scholar
[6] Matsukevich D N, Chaneliere T, Bhattacharya M, Lan S Y, Jenkins S D, Kennedy T A B, Kuzmich A 2005 Phys. Rev. Lett. 95 040405Google Scholar
[7] de Riedmatten H, Laurat J, Chou C W, Schomburg E W, Felinto D, Kimble H J 2006 Phys. Rev. Lett. 97 113603Google Scholar
[8] Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar
[9] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9 332Google Scholar
[10] Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Yuan H X, Wen Y F, Wang H, Xie C D, Peng K C 2016 Phys. Rev. A 93 052327Google Scholar
[11] Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W, 2007 Phys. Rev. Lett. 98 240502Google Scholar
[12] Chen Z B, Zhao B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. A 76 022329Google Scholar
[13] Bussieres F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar
[14] Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301Google Scholar
[15] Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar
[16] Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nature Photon. 13 346Google Scholar
[17] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nature Photon. 10 381Google Scholar
[18] Bao X H, Reingruber A, Dietrich P, Rui J, Duck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nature Phys. 8 517Google Scholar
[19] Yang S J, Wang X J, Li J, Rui J, Bao X H, J W Pan 2015 Phys. Rev. Lett. 114 210501Google Scholar
[20] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar
[21] Afzelius M, Simon C 2010 Phys. Rev. A 82 022310Google Scholar
[22] Sabooni M, Li Q, Kröll S, Rippe L 2013 Phys. Rev. Lett. 110 133604Google Scholar
[23] Jobez P, Usmani I, Timoney N, Laplane C, Gisin N, Afzelius M 2014 New J. Phys. 16 083005Google Scholar
[24] Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar
[25] 袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海 2021 70 070302Google Scholar
Yuan L, Wen Y F, Li Y, Liu C, Li S J, Xu Z X, Wang H 2021 Acta Phys. Sin. 70 070302Google Scholar
[26] Wen Y F, Zhou P, Xu Z X, Yuan L, Wang M J, Wang S Z, Chen L R, Wang H 2020 Opt. Express 28 360Google Scholar
[27] Nikolett N, Donald W, Shinya K, Scott P, Takao A 2020 Phys. Rev. Appl. 13 064010Google Scholar
[28] Zeeb S, Noh C, Parkins A S, Carmichael H J 2015 Phys. Rev. A 91 023829Google Scholar
[29] Huang H, Lehmann K K 2007 Opt. Express 15 8745Google Scholar
[30] 周继阳, 李强, 许金时, 李传锋, 郭光灿 2022 71 060303Google Scholar
Zhou J Y, Li Q, Xu J S, Li C F, Guo G G 2022 Acta Phys. Sin. 71 060303Google Scholar
[31] Wen Y F, Zhou P, Xu Z X, Yuan L, Zhang H Y, Wang S Z, Tian L, Li S J, Wang H 2019 Phys. Rev. A 100 012342Google Scholar
[32] Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang S Z, Li S J, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar
[33] White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar
[34] James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312Google Scholar
Catalog
Metrics
- Abstract views: 3891
- PDF Downloads: 130
- Cited By: 0