搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的研究

马腾飞 王敏杰 王圣智 焦浩乐 谢燕 李淑静 徐忠孝 王海

引用本文:
Citation:

光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的研究

马腾飞, 王敏杰, 王圣智, 焦浩乐, 谢燕, 李淑静, 徐忠孝, 王海

Experimental study of retrieval efficiency of Duan-Lukin-Cirac-Zoller quantum memory by optical cavity-enhanced

Ma Teng-Fei, Wang Min-Jie, Wang Sheng-Zhi, Jiao Hao-Le, Xie Yan, Li Shu-Jing, Xu Zhong-Xiao, Wang Hai
PDF
HTML
导出引用
  • 量子中继是长距离纠缠分发的关键组成部分, 而基于原子系综存储的读出效率是量子中继能否实用化的一个重要指标. 本文利用冷原子系综中的自发拉曼散射过程产生Duan-Lukin-Cirac-Zoller量子记忆, 在原子系综周围搭建环形腔, 增强光与原子相互作用, 从而提高读出效率, 然而, 腔内原子的能级分裂使量子记忆的读出效率降低. 本文研究了读出效率随读光相对于原子共振线失谐量的变化关系. 结果显示: 当读光的失谐量为80 MHz时, 本质读出效率为45%, 这时腔对读出效率的增强倍数为1.68倍.
    Long-distance entanglement distribution is an important task for quantum communication, but difficult to achieve due to the loss of photons in optical fiber transmission. Quantum repeater is a scheme to solve this problem. In this scheme, the long distance of entanglement distribution is divided into several small parts, the entanglement is established first at both ends of each part, then, the entanglement distance is extended through the entanglement exchange of adjacent interval parts, in order to achieve the long distance entanglement distribution. Of them, the Duan-Lukin-Cirac-Zoller (DLCZ) protocol based on the cold atom ensemble and the linear optics which can generate and store entanglement, is regarded as one of the most potential schemes. In the process of DLCZ, retrieval efficiency is an important index of the quantum repeater, because it will influence each entanglement exchange operation between adjacent quantum repeater nodes. Generally, the retrieval efficiency is improved by optimizing the reading pulse, increasing the optical depth (OD) of the atomic ensemble and the cavity enhancement. The ring cavity constrains the light field to increase the intensity of the interaction between light and atoms, and effectively improve the retrieval efficiency of the quantum memory.In this work, atomic ensembles are placed in a ring cavity. The cavity length is 3.3 m and the fineness is 13.5. The optical loss of all ring cavity is 21%, mainly including 15% loss of other optical elements and 6% loss of the cell. In order to increase the retrieval efficiency, we need to ensure the mode resonance of read-out photon, write-out photon and locking. The cavity needs two input beams of light: one comes from the path of read-out photon and the other from the path of write-out photon in the reverse direction. The two beams are locked at the same frequency as the write-out photon and the read-out photon respectively. The cavity length is adjusted by moving the cavity mirrors’ positions through translating the frame, to make two light modes resonate. The acousto-optic modulator (AOM) is inserted into the path of the locking to control the frequency of the locking. By adjusting the AOM to change the frequency of the locking, the locking can be coincident with the write-out and read-out cavity modes. Then, the three-mode resonance can be achievedWhen the cavity mode resonates with the atomic line, it will lead the atomic formants to split. thereby affecting the enhancement effect of retrieval efficiency. In the experiment, the detuning of the read light will affect the frequency of the read-out photon, and further affect the detuning of the cavity mode with the resonance line of the atom. Thus, by increasing the detuning between the reading light and the atomic transition line, the frequency splitting between the two modes can be reduced, then enhance the retrieval efficiency. We study the relation between the enhancement factor of the retrieval efficiency and the detuning amount of the reading light relative to the atomic resonance line. The results show that when the detuning amount of reading light is 80 MHz, the intrinsic readout efficiency is 45%, and the readout efficiency is enhanced by 1.68 times.
      通信作者: 李淑静, lishujing@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0301402)、国家自然科学基金(批准号11475109, 11974228, 11604191)和山西省“1331 工程”重点学科建设计划(批准号: 1331KSC)资助的课题
      Corresponding author: Li Shu-Jing, lishujing@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11974228, 11604191), and the Shanxi Provincial Fund for “1331 Project” Key Subjects Construction, China (Grant No. 1331KSC)
    [1]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [2]

    Simon C 2017 Nat. Photonics 11 678Google Scholar

    [3]

    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [4]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241Google Scholar

    [5]

    Korzh B, Lim C C W, Houlmann R, Gisin N, Li M J, Nolan D, Sanguinetti B, Thew R, Zbinden H 2015 Nat. Photonics 9 163Google Scholar

    [6]

    Chen G H, Wang H C, Chen Z F 2015 Front. Phys. 10 1Google Scholar

    [7]

    Chrapkiewicz R, Wasilewski W 2012 Opt. Express 20 29540Google Scholar

    [8]

    Briegel H J, Dur W, Cirac J I, Zoller P 1998 Phys. Rev. Lett 81 5932Google Scholar

    [9]

    Gisin N 2015 Front. Phys. 10 100307Google Scholar

    [10]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [11]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 030404Google Scholar

    [12]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [13]

    Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photonics 9 363Google Scholar

    [14]

    Clausen C, Usmani I, Bussieres F, Sangouard N, Afzelius M, de Riedmatten H, Gisin N 2011 Nature 469 508Google Scholar

    [15]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [16]

    Lo Piparo N, Razavi M 2013 Phys. Rev. A 88 012332Google Scholar

    [17]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [18]

    Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev. A 78 021802(R)

    [19]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [20]

    Zhang S, Chen J F, Liu C, Zhou S, Loy M M, Wong G K, Du S 2012 Rev. Sci. Instrum. 83 073102Google Scholar

    [21]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

  • 图 1  (a) $ {}^{87}{\text{Rb}} $原子能级. 其中左图为写过程, $ {\sigma ^+}\left( {{\sigma ^-}} \right) $分别代表左(右)旋圆偏振的斯托克斯光, W代表写光光场. 右图为读过程, $ {\sigma ^+}\left( {{\sigma ^-}} \right) $代表左(右)旋圆偏振的反斯托克斯光, R代表读光光场; $\varDelta$代表读光和写光相对于原子共振跃迁线的失谐; (b) 实验时序图, 图中Cleaning为态制备过程, Writing代表写过程, Reading代表读过程, Locking表示腔锁定时序, MOT代表冷原子俘获过程

    Fig. 1.  (a) Relevant $ {}^{87}{\text{Rb}} $ atomic levels. The left is writing process, $ {\sigma ^+}\left( {{\sigma ^-}} \right) $ represents left (right) polarization of Stokes, W represents writing field. The right is reading process, $ {\sigma ^+}\left( {{\sigma ^-}} \right) $ represents left (right) polarization of anti-Stokes, R represents reading field; $\varDelta$denotes the detuning of the reading and writing laser relative to the resonance transition; (b) time sequence of experimental cycle, Cleaning: the state cleaning process, Write: the writing process, Reading: the writing process, Locking: the locking cavity process, MOT: the cold atom preparation process.

    图 2  实验装置示意图. 其中PZT代表压电陶瓷; BS为耦合镜; SPD1(SPD2)表示读接收(写接收)单光子探测器; Locking为锁腔光; Flipper为可折叠式镜架; $ {\lambda / 2} $$ {\lambda / 4} $分别为半玻片和四分之一玻片

    Fig. 2.  Experimental setup. PZT represents the piezoelectric ceramic transducer; BS, coupling mirror; SPD1(SPD2), read receive (write receive) single photon detector; Locking, the lock cavity light; $ {\lambda / 2} $ and $ {\lambda / 4} $, half wave plate and quarter wave plate.

    图 3  读出效率的增强倍数和读出效率随着读光失谐量的变化

    Fig. 3.  The variation of enhancement factor of retrieval efficiency and retrieval efficiency with the detuning of reading laser.

    Baidu
  • [1]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [2]

    Simon C 2017 Nat. Photonics 11 678Google Scholar

    [3]

    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [4]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241Google Scholar

    [5]

    Korzh B, Lim C C W, Houlmann R, Gisin N, Li M J, Nolan D, Sanguinetti B, Thew R, Zbinden H 2015 Nat. Photonics 9 163Google Scholar

    [6]

    Chen G H, Wang H C, Chen Z F 2015 Front. Phys. 10 1Google Scholar

    [7]

    Chrapkiewicz R, Wasilewski W 2012 Opt. Express 20 29540Google Scholar

    [8]

    Briegel H J, Dur W, Cirac J I, Zoller P 1998 Phys. Rev. Lett 81 5932Google Scholar

    [9]

    Gisin N 2015 Front. Phys. 10 100307Google Scholar

    [10]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [11]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 030404Google Scholar

    [12]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [13]

    Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photonics 9 363Google Scholar

    [14]

    Clausen C, Usmani I, Bussieres F, Sangouard N, Afzelius M, de Riedmatten H, Gisin N 2011 Nature 469 508Google Scholar

    [15]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [16]

    Lo Piparo N, Razavi M 2013 Phys. Rev. A 88 012332Google Scholar

    [17]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [18]

    Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev. A 78 021802(R)

    [19]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [20]

    Zhang S, Chen J F, Liu C, Zhou S, Loy M M, Wong G K, Du S 2012 Rev. Sci. Instrum. 83 073102Google Scholar

    [21]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

  • [1] 汪书兴, 李天钧, 黄新朝, 朱林繁. 内壳层体系的X射线腔量子光学.  , 2024, 73(24): . doi: 10.7498/aps.73.20241218
    [2] 杨光, 钞苏亚, 聂敏, 刘原华, 张美玲. 面向图像分类的混合量子长短期记忆神经网络构建方法.  , 2023, 72(5): 058901. doi: 10.7498/aps.72.20221924
    [3] 王伟杰, 姜美美, 王淑梅, 曲英杰, 马鸿洋, 邱田会. 基于量子长短期记忆网络的量子图像混沌加密方案.  , 2023, 72(12): 120301. doi: 10.7498/aps.72.20230242
    [4] 范文信, 王敏杰, 焦浩乐, 路迦进, 刘海龙, 杨智芳, 席梦琦, 李淑静, 王海. 读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响.  , 2023, 72(21): 210301. doi: 10.7498/aps.72.20230966
    [5] 马腾飞, 王敏杰, 王圣智, 谢燕, 焦浩乐, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的实验研究.  , 2021, (): . doi: 10.7498/aps.70.20210881
    [6] 王圣智, 温亚飞, 张常睿, 王登新, 徐忠孝, 李淑静, 王海. 读出效率对光与原子纠缠产生的影响.  , 2019, 68(2): 020301. doi: 10.7498/aps.68.20181314
    [7] 刘幸, 郭红梅, 付饶, 范浩然, 冯帅, 陈笑, 李传波, 王义全. 基于环形微腔的多频段三角晶格光子晶体耦合腔波导光学传输特性.  , 2018, 67(23): 234201. doi: 10.7498/aps.67.20181579
    [8] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化.  , 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [9] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器.  , 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [10] 周静, 王鸣, 倪海彬, 马鑫. 环形狭缝腔阵列光学特性的研究.  , 2015, 64(22): 227301. doi: 10.7498/aps.64.227301
    [11] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究.  , 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [12] 吴健雄, 程腾, 张青川, 高杰, 伍小平. 光学读出红外成像中面光源影响下的光学检测灵敏度研究.  , 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [13] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究.  , 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [14] 马凤英, 苏建坡, 郭茂田, 池泉, 陈明, 余振芳. 微腔面发射器件外量子效率研究.  , 2011, 60(6): 064203. doi: 10.7498/aps.60.064203
    [15] 柏江湘, 米贤武, 李德俊. 光学微盘腔与三能级量子点系统中的模耦合研究.  , 2010, 59(9): 6205-6212. doi: 10.7498/aps.59.6205
    [16] 熊志铭, 张青川, 陈大鹏, 伍小平, 郭哲颖, 董凤良, 缪正宇, 李超波. 光学读出微梁阵列红外成像及性能分析.  , 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [17] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变.  , 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
    [18] 龚尚庆, 徐至展, 潘少华, 杨国桢. 利用带模型探讨染料环形腔系统的光学双稳特性.  , 1994, 43(12): 1979-1986. doi: 10.7498/aps.43.1979
    [19] 张林, 林仁明, 黄思先. 受驱动光学系统多光子量子统计理论(Ⅱ)——劣腔情况.  , 1988, 37(9): 1438-1449. doi: 10.7498/aps.37.1438
    [20] 赵勇, 霍裕平. 非线性环形光学腔中分岔混沌的新行为.  , 1987, 36(7): 909-914. doi: 10.7498/aps.36.909
计量
  • 文章访问数:  3983
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 修回日期:  2021-09-24
  • 上网日期:  2022-01-09
  • 刊出日期:  2022-01-20

/

返回文章
返回
Baidu
map