-
Rydberg atom can respond to weak microwave electric field signal in real-time by using its electromagnetically induced transparency effect to realize down conversion of space microwave electric field signal, which can be used as a superheterodyne receiver. The Rydberg atom superheterodyne receiver is a new receiving system composed of Rydberg atoms, photodetectors, and electronic information processing modules. Presently, the physical response mechanism of Rydberg atomic superheterodyne receiving technology is studied in depth. However, no complete receiving link analysis model has been established, which is not conducive to optimizing its system performance. Based on the physical mechanism of the Rydberg atom responding to the microwave electric field, this paper introduces the concept of intrinsic expansion coefficient, establishes and experimentally verifies the receiving link model of the Rydberg atom superheterodyne receiver, and briefly discusses the influence of the intrinsic expansion coefficient on the system sensitivity and response characteristics, thereby providing the theoretical guidance for optimizing the performance of the Rydberg atom superheterodyne receiving system. In the end, the Rydberg atomic and the electronic receiving links' sensitivity performance is discussed and compared.
-
Keywords:
- Rydberg atoms /
- intrinsic expansion coefficient /
- receiving link /
- microwave electric field
[1] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar
[2] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2021 IEEE Antennas Propag. Mag. 63 63Google Scholar
[3] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar
[4] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar
[5] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 Appl. Sci. -Basel 10 1346Google Scholar
[6] Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106Google Scholar
[7] Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar
[8] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar
[9] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar
[10] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar
[11] Mao R Q, Lin Y, Yang K, An Q, Fu Y Q 2018 IEEE Antennas Wirel. Propag. Lett. Early Access
[12] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar
[13] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427Google Scholar
[14] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar
[15] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar
[16] 廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14
Liao K Y, Tu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Chin. -Phys. Mech. Astron. 51 14
[17] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar
[18] Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T. 2020 Nat. Phys. 16 911Google Scholar
[19] Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics 9 250Google Scholar
[20] Sedlacek J. A, Schwettmann A, Kübler H, Shaffer 2013 Phys. Rev. Lett. 111 063001Google Scholar
[21] Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar
[22] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar
[23] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar
[24] Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B:At. , Mol. Opt. Phys. 53 094003Google Scholar
[25] Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103Google Scholar
[26] Fancher C T, Scherer D R, John MCS, Schmittbergermarlow B 2021 IEEE Trans. Quantum Eng. 2 3501313Google Scholar
[27] Wu B, Lin Y, Liu Y, An Q, Liao D W, Fu Y Q 2022 Electron. Lett. 58 914Google Scholar
[28] Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett 120 204001Google Scholar
[29] Gabriel S B, Shane V, Eric B, Zoya P 2022 arXiv: 2209.00908 [hep-ph]
-
表 1 计算得到的κ, C1, 以及C4–2与C1之间的误差值
Table 1. Calculated κ, C1, and the error between C4–2 and C1.
κ
/(10–13 W·Hz–1)C1
/(10–4 A2·m2·W–1)C4–2 – C1
/(10–5 A2·m2·W–1)|(C4–2 – C1)/C1|
/%8.793 1.5090 –0.7823 5.18 8.924 1.5543 –1.2353 7.95 8.256 1.3303 1.0045 7.55 8.360 1.3640 0.6673 4.89 8.315 1.3494 0.8137 6.03 -
[1] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar
[2] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2021 IEEE Antennas Propag. Mag. 63 63Google Scholar
[3] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar
[4] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar
[5] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 Appl. Sci. -Basel 10 1346Google Scholar
[6] Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106Google Scholar
[7] Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar
[8] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar
[9] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar
[10] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar
[11] Mao R Q, Lin Y, Yang K, An Q, Fu Y Q 2018 IEEE Antennas Wirel. Propag. Lett. Early Access
[12] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar
[13] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427Google Scholar
[14] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar
[15] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar
[16] 廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14
Liao K Y, Tu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Chin. -Phys. Mech. Astron. 51 14
[17] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar
[18] Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T. 2020 Nat. Phys. 16 911Google Scholar
[19] Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics 9 250Google Scholar
[20] Sedlacek J. A, Schwettmann A, Kübler H, Shaffer 2013 Phys. Rev. Lett. 111 063001Google Scholar
[21] Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar
[22] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar
[23] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar
[24] Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B:At. , Mol. Opt. Phys. 53 094003Google Scholar
[25] Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103Google Scholar
[26] Fancher C T, Scherer D R, John MCS, Schmittbergermarlow B 2021 IEEE Trans. Quantum Eng. 2 3501313Google Scholar
[27] Wu B, Lin Y, Liu Y, An Q, Liao D W, Fu Y Q 2022 Electron. Lett. 58 914Google Scholar
[28] Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett 120 204001Google Scholar
[29] Gabriel S B, Shane V, Eric B, Zoya P 2022 arXiv: 2209.00908 [hep-ph]
Catalog
Metrics
- Abstract views: 4105
- PDF Downloads: 104
- Cited By: 0