Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application and development of liquid argon detector in rare event detection

Zheng Hao-Zhe Liu Yuan-Yuan Wang Li Cheng Jian-Ping

Citation:

Application and development of liquid argon detector in rare event detection

Zheng Hao-Zhe, Liu Yuan-Yuan, Wang Li, Cheng Jian-Ping
PDF
HTML
Get Citation
  • Rare event detection is a frontier subject in particle physics and nuclear physics. In particular, dark matter detection, neutrino-free double beta decay and neutrino-nucleon coherent elastic scattering are being planned and implemented gradually. Rare event detection requires not only the detectors to possess excellent performances but also extremely low environmental background, so the selection of detectors and related materials is an important issue in rare event detection. Liquid argon has become an important scintillator material for scintillator detectors because of its low cost, good scintillation performance and large volume. Liquid argon was first studied in the 1940s as a sensitive material for ionizing radiation detectors. The first measurements of high-energy beta particles were obtained by using a liquid argon ionization chamber in 1953. The ICARUS group put forward the idea of constructing liquid argon temporal projection chamber, and made attempt to construct liquid argon temporal projection chamber in 1977. The scintillation light signals were collected for the first time in a liquid argon temporal projection chamber in 1999. Thus, the drift time of the particle can be obtained to determine the particle track. After development, single-phase liquid argon scintillator detector and two-phase argon time projection chamber have become two common types of liquid argon detectors, and have been extensively used in rare event detection experiments in recent years. For dark matter detection, the DEAP group and DarkSide group have achieved good results with single-phase liquid argon scintillation detector and two-phase argon time projection chamber, respectively. For neutrino-free double beta decay experiments, the GERDA group has done a lot of researches of liquid argon anti-coincidence system and applied the said system to experiments. The LEGEND group, which is the combination of GERDA and MAJORANA experimental group, upgraded the liquid argon anti-coincidence system which was applied to the following LEGEND-200 project. For neutrino-nucleon elastic scattering experiments, COHERENT obtained the latest results by using the liquid argon detectors. The Taishan neutrino-nucleon coherent elastic scattering project of the High Energy Institute of Chinese Academy of Sciences has also begun to study the feasibility of liquid argon anti-coincidence system. Finally, this paper discusses the direction of optimizing the liquid argon detector, such as exposure, background level and optical readout scheme, and gives a good prospect of liquid argon detector applied to rare event detection in the future.
      Corresponding author: Liu Yuan-Yuan, yyliu@bnu.edu.cn ; Wang Li, wangl@bnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1604701) and the National Natural Science Foundation of China (Grant No. 1222200227).
    [1]

    Rubin V C, Ford Jr W K 1970 Astrophys. J. 159 379Google Scholar

    [2]

    Furry W H 1939 Phys. Rev. 56 1184Google Scholar

    [3]

    Freedman D Z 1974 Phys. Rev. D 9 1389Google Scholar

    [4]

    Akerib D S, Akerlof C W, Akimov D Y, et al. 2020 Nucl. Instrum. Methods. Phys. Res. , Sect. A 953 163047Google Scholar

    [5]

    Amaudruz P A, Baldwin M, Batygov M, et al. 2019 Astropart. Phys. 108 1Google Scholar

    [6]

    Aalseth C E, Barbeau P S, Bowden N S, et al. 2011 Phys. Rev. Lett. 106 131301Google Scholar

    [7]

    Agnese R, Anderson A J, Aralis T, et al. 2018 Phys. Rev. D 97 022002Google Scholar

    [8]

    Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. Lett. 121 081307Google Scholar

    [9]

    Agostini M, Araujo G R, Bakalyarov A M, et al. 2020 Phys. Rev. Lett. 125 252502Google Scholar

    [10]

    Akimov D, Albert J B, An P, et al. 2019 Phys. Rev. D 100 115020Google Scholar

    [11]

    Davidson N, Larsh J A E 1948 Phys. Rev. 74 220Google Scholar

    [12]

    Marshall J H 1954 Rev. Sci. Instrum. 25 232Google Scholar

    [13]

    Dolgoshein B A, Lebedenko V N, Rodionov B U 1970 JETP Lett. 11 351

    [14]

    Rubbia C 1977 https://cds.cern.ch/record/117852/files/CERN- EP-INT-77-8/[2022-10-27]

    [15]

    Bvnetti P, Bettini A, Calligarich E, et al. 1993 Nucl. Instrum. Methods. Phys. Res. , Sect. A 332 395Google Scholar

    [16]

    Cennini P, Cittolin S, Revol J P, et al. 1994 Nucl. Instrum. Methods. Phys. Res. , Sect. A 345 230Google Scholar

    [17]

    Kubota S, Hishida M, Nohara A 1978 Nucl. Instrum. Methods 150 561Google Scholar

    [18]

    Cennini P, Revol J P, Rubbia C, et al. 1999 Nucl. Instrum. Methods. Phys. Res. , Sect. A 432 240Google Scholar

    [19]

    Ajaj R, Amaudruz P A, Araujo G R, et al. 2019 Phys. Rev. D 100 022004Google Scholar

    [20]

    Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. D 98 102006Google Scholar

    [21]

    Suzuki M, Gen J R, Kubota S 1982 Nucl. Instrum. Methods Phys. Res. 192 565Google Scholar

    [22]

    Doke T, Hitachi A, Kikuchi J, Masuda K, Okada H, Shibamura E 2002 Jpn. J. Appl. Phys. 41 1538Google Scholar

    [23]

    Hitachi A, Takahashi T, Funayama N, Masuda K, Kikuchi J, Doke T 1983 Phys. Rev. B 27 5279Google Scholar

    [24]

    Peiffer J P 2007 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)

    [25]

    Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P06003Google Scholar

    [26]

    Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P05003Google Scholar

    [27]

    Calvo J, Cantini C, Crivelli P, et al. 2018 Astropart. Phys. 97 186Google Scholar

    [28]

    Canci N 2020 J. Instrum. 15 C03026Google Scholar

    [29]

    Zani A 2014 Adv. High. Energy Phys. 2014 1Google Scholar

    [30]

    Amaudruz P A, Batygov M, Beltran B, et al. 2016 Astropart. Phys. 85 1Google Scholar

    [31]

    Adhikari P, Ajaj R, Alpízar-Venegas M, et al. 2021 Eur. Phys. J. C 81 1Google Scholar

    [32]

    Adhikari P, Ajaj R, Alpizar-Venegas M, et al. 2022 Phys. Rev. Lett. 128 011801Google Scholar

    [33]

    Benetti P, Acciarri R, Belluco M, et al. 2011 Nucl. Phys. B Proc. Suppl. 221 53Google Scholar

    [34]

    Alexander T, Alton D, Arisaka K, et al. 2013 Astropart. Phys. 49 44Google Scholar

    [35]

    Agnes P, Alexander T, Alton A, et al. 2015 Phys. Lett. B 743 456Google Scholar

    [36]

    Aalseth C E, Acerbi F, Agnes P, et al. 2018 Eur. Phys. J. Plus 133 1Google Scholar

    [37]

    Rossi M 2021 Nuovo Cimento 44 1Google Scholar

    [38]

    Carnesecchi F 2020 J. Instrum. 15 C03038Google Scholar

    [39]

    Consiglio L 2020 J. Instrum. 15 C05063Google Scholar

    [40]

    Majorana E 1937 Nuovo Cimento 14 171Google Scholar

    [41]

    Abt I, Altmann M, Bakalyarov A, et al. 2004 arXiv: 0404.039v1 [hep-ex]

    [42]

    Simgen H 2005 Nucl. Phys. B Proc. Suppl. 143 567Google Scholar

    [43]

    Orrell J L, Aalseth C E, Amsbaugh J F, Doe P J, Hossbach T W 2007 Nucl. Instrum. Methods. Phys. Res., Sect. A 579 91Google Scholar

    [44]

    Heider M B 2009 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)

    [45]

    Agostini M, Barnabé-Heider M, Budjáš D, et al. 2015 Eur. Phys. J. C 75 1Google Scholar

    [46]

    Agostini M, Bakalyarov A M, Balata M, et al. 2018 Eur. Phys. J. C 78 1Google Scholar

    [47]

    Agostini M, Allardt M, Bakalyarov A M, et al. 2017 Nature 544 47Google Scholar

    [48]

    Hoppe E W, Aalseth C E, Farmer O T, Hossbach T W, Liezers M, Miley H S, Overman N R, Reeves J H 2014 Nucl. Instrum. Methods. Phys. Res., Sect. A 764 116Google Scholar

    [49]

    Schwarz M, Krause P, Leonhardt A, et al. 2021 EPJ Web Conf. 253 11014Google Scholar

    [50]

    Efremenko Y, Fajt L, Febbraro M, et al. 2019 J. Instrum. 14 P07006Google Scholar

    [51]

    Wang L, Yue Q, Kang K J, et al. 2017 Sci. Chin. Phys. Mech. 60 1Google Scholar

    [52]

    Wang Z, Yue Q, Kang K J, et al. 2013 Phys. Rev. D 88 052004Google Scholar

    [53]

    Yue Q, Wang Z, Kang K J, et al. 2014 Phys. Rev. D 90 091701Google Scholar

    [54]

    Yang L T, Li H B, Yue Q, et al. 2019 Phys. Rev. Lett. 123 221301Google Scholar

    [55]

    Jiang H, Jia L P, Yue Q, et al. 2018 Phys. Rev. Lett. 120 241301Google Scholar

    [56]

    She Z, Jia L P, Yue Q, et al. 2020 Phys. Rev. Lett. 124 111301Google Scholar

    [57]

    Dai W H, Ma H, Yue Q, et al. 2022 Phys. Rev. D 106 032012Google Scholar

    [58]

    Xiao M J, Xiao X, Zhao L, et al. 2014 Sci. Chin. Phys. Mech. 57 2024Google Scholar

    [59]

    Ni K X, Lai Y H, Abdukerim A, et al. 2019 Chin. Phys. C 43 113001Google Scholar

    [60]

    Cui X, Abdukerim A, Chen W, et al. 2017 Phys. Rev. Lett. 119 181302Google Scholar

    [61]

    Meng Y, Wang Z, Tao Y, et al. 2021 Phys. Rev. Lett. 127 261802Google Scholar

    [62]

    Wang S B 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 958 162439Google Scholar

    [63]

    Akimov D, Albert J B, An P, et al. 2017 Science 357 1123Google Scholar

    [64]

    Wei Y T, Guan M Y, Liu J C, Yu Z Y, Yang C G, Guo C, Xiong W X, Gan Y Y, Zhao Q, Li J J 2021 Radiat. Detect. Technol. 5 297Google Scholar

    [65]

    Guo C, Guan M Y, Sun X L, Xiong W X, Zhang P, Yang C G, Wei Y T, Gan Y Y, Zhao Q 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 980 164488Google Scholar

    [66]

    Wang L, Guan M Y, Qin H J, et al. 2021 J. Instrum. 16 P07021Google Scholar

    [67]

    Adams D Q, Alduino C, Alfonso K, et al. 2022 Nature 604 53Google Scholar

  • 图 1  激发态氩原子形成原理

    Figure 1.  Formation mechanism of excited argon.

    图 2  液氩闪烁光产生和收集过程示意图

    Figure 2.  Schematic diagram of the generation and collection process of liquid argon scintillation.

    图 3  两相氩TPC装置示意图[28]

    Figure 3.  Schematic diagram of double-phase argon TPC[28].

    图 4  60Co源测试能谱[45]

    Figure 4.  The energy spectrum of 60Co source[45].

    图 5  GERDAⅡ期实验装置图 (a) 锗探测器阵列和液氩反符合系统装置图[46]; (b)实验整体装置图[46]

    Figure 5.  GERDA phase Ⅱ experimental setup: (a) Diagram of germanium detector array and liquid argon veto system[46]; (b) the overall setup[46].

    图 6  GERDAⅡ期实验结果[9]

    Figure 6.  Results of GERDA phaseⅡ experiment[9]

    表 1  稀有事例探测常用探测器类型对比

    Table 1.  Comparison of detector types in rare event detection.

    液态惰性气体探测器高纯锗探测器极低温量热器
    液氩探测器液氙探测器
    优势成本低, 有粒子甄别能力,
    探测效率高
    有粒子甄别能力,
    探测效率高
    低阈值, 极高能量分辨率高能量分辨率,
    有粒子甄别能力
    缺点能量分辨率相对较低成本较高, 能量
    分辨率相对低
    成本较高, 探测器生产
    工艺复杂, 单个晶体
    质量增加困难
    需要极低温环境
    (mK量级)
    DownLoad: CSV

    表 2  液氩闪烁光特性[24]

    Table 2.  Scintillation properties of liquid argon.

    闪烁特性相关物理量符号数值
    光产额/(光子·keV–1)Y41±2
    发光峰值波长/nmλmax128
    单态时间常数/nsτs6
    三重态时间常数/μsτt1.59
    β事件快慢成分比Is/It (e)0.3
    α事件快慢成分比Is/It (α)1.3
    裂变碎片事件快慢成分比Is/It (ff)3
    DownLoad: CSV

    表 3  国内外液氩探测器相关实验组概况

    Table 3.  General situation of liquid argon detector related experimental groups at home and abroad.

    实验组
    名称
    稀有事例
    探测类型
    探测器类型液氩探测
    器质量
    光读出运行状态主要特点
    DEAP暗物质单相液氩闪烁体3260 kgPMT+光导运行中较早采用液氩为介质探测暗物质
    WArP暗物质两相氩TPC140 kgPMT已结束最早尝试用TPC探测暗物质
    DarkSide暗物质两相氩TPC46.4 kgPMT运行中地下氩、中子反符合
    GERDA0νββ高纯锗探测器+单相液氩
    闪烁体(反符合)
    1400 kgSiPM+光
    纤/PMT
    已结束系统地研究液氩反符合
    系统并应用
    LEGEND0νββ高纯锗探测器+单相液氩
    闪烁体(反符合)
    SiPM+光纤建设中实验组合并, 新的读出方案研究
    COHERENTCEνNS单相液氩闪烁体79.5 kgPMT运行中第一个尝试用液氩探测器探测CEνNS事例
    TaishanCEνNS两相氩TPC+单相液氩闪
    烁体(反符合)
    200 kgPMT建设中尝试用液氩探测器作为CEνNS
    事例的反符合系统
    DownLoad: CSV

    表 4  液氩探测器优化和升级

    Table 4.  Optimization and upgrade of liquid argon detector.

    实验组名称39Ar本底抑制其它本底抑制氩纯度监测和稳定光读出方案升级
    DEAP利用液氩的粒子甄别能力扣除水切伦科夫探测器抑制μ子氡捕集阱去除放射性杂质
    DarkSide地下氩生产技术应用水切伦科夫探测器抑制μ子, 载硼或载钆液闪抑制中子同时进行去除电负性
    杂质和氩同位素分离
    SiPM低温稳定读出和紫外
    波段直接读出技术研究
    GERDA水切伦科夫探测器抑制μ子, 液氩探测器抑制其他本底SiPM+光纤读出
    LEGEND地下氩生成技术研究水切伦科夫探测器抑制μ子, 液氩探测器抑制其他本底液氩纯度监测仪SiPM+光纤双端读出
    Taishan地下氩生产技术研究塑料闪烁体抑制μ子, 液氩探测器抑制其他本底SiPM低温稳定读出技术研究
    DownLoad: CSV
    Baidu
  • [1]

    Rubin V C, Ford Jr W K 1970 Astrophys. J. 159 379Google Scholar

    [2]

    Furry W H 1939 Phys. Rev. 56 1184Google Scholar

    [3]

    Freedman D Z 1974 Phys. Rev. D 9 1389Google Scholar

    [4]

    Akerib D S, Akerlof C W, Akimov D Y, et al. 2020 Nucl. Instrum. Methods. Phys. Res. , Sect. A 953 163047Google Scholar

    [5]

    Amaudruz P A, Baldwin M, Batygov M, et al. 2019 Astropart. Phys. 108 1Google Scholar

    [6]

    Aalseth C E, Barbeau P S, Bowden N S, et al. 2011 Phys. Rev. Lett. 106 131301Google Scholar

    [7]

    Agnese R, Anderson A J, Aralis T, et al. 2018 Phys. Rev. D 97 022002Google Scholar

    [8]

    Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. Lett. 121 081307Google Scholar

    [9]

    Agostini M, Araujo G R, Bakalyarov A M, et al. 2020 Phys. Rev. Lett. 125 252502Google Scholar

    [10]

    Akimov D, Albert J B, An P, et al. 2019 Phys. Rev. D 100 115020Google Scholar

    [11]

    Davidson N, Larsh J A E 1948 Phys. Rev. 74 220Google Scholar

    [12]

    Marshall J H 1954 Rev. Sci. Instrum. 25 232Google Scholar

    [13]

    Dolgoshein B A, Lebedenko V N, Rodionov B U 1970 JETP Lett. 11 351

    [14]

    Rubbia C 1977 https://cds.cern.ch/record/117852/files/CERN- EP-INT-77-8/[2022-10-27]

    [15]

    Bvnetti P, Bettini A, Calligarich E, et al. 1993 Nucl. Instrum. Methods. Phys. Res. , Sect. A 332 395Google Scholar

    [16]

    Cennini P, Cittolin S, Revol J P, et al. 1994 Nucl. Instrum. Methods. Phys. Res. , Sect. A 345 230Google Scholar

    [17]

    Kubota S, Hishida M, Nohara A 1978 Nucl. Instrum. Methods 150 561Google Scholar

    [18]

    Cennini P, Revol J P, Rubbia C, et al. 1999 Nucl. Instrum. Methods. Phys. Res. , Sect. A 432 240Google Scholar

    [19]

    Ajaj R, Amaudruz P A, Araujo G R, et al. 2019 Phys. Rev. D 100 022004Google Scholar

    [20]

    Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. D 98 102006Google Scholar

    [21]

    Suzuki M, Gen J R, Kubota S 1982 Nucl. Instrum. Methods Phys. Res. 192 565Google Scholar

    [22]

    Doke T, Hitachi A, Kikuchi J, Masuda K, Okada H, Shibamura E 2002 Jpn. J. Appl. Phys. 41 1538Google Scholar

    [23]

    Hitachi A, Takahashi T, Funayama N, Masuda K, Kikuchi J, Doke T 1983 Phys. Rev. B 27 5279Google Scholar

    [24]

    Peiffer J P 2007 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)

    [25]

    Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P06003Google Scholar

    [26]

    Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P05003Google Scholar

    [27]

    Calvo J, Cantini C, Crivelli P, et al. 2018 Astropart. Phys. 97 186Google Scholar

    [28]

    Canci N 2020 J. Instrum. 15 C03026Google Scholar

    [29]

    Zani A 2014 Adv. High. Energy Phys. 2014 1Google Scholar

    [30]

    Amaudruz P A, Batygov M, Beltran B, et al. 2016 Astropart. Phys. 85 1Google Scholar

    [31]

    Adhikari P, Ajaj R, Alpízar-Venegas M, et al. 2021 Eur. Phys. J. C 81 1Google Scholar

    [32]

    Adhikari P, Ajaj R, Alpizar-Venegas M, et al. 2022 Phys. Rev. Lett. 128 011801Google Scholar

    [33]

    Benetti P, Acciarri R, Belluco M, et al. 2011 Nucl. Phys. B Proc. Suppl. 221 53Google Scholar

    [34]

    Alexander T, Alton D, Arisaka K, et al. 2013 Astropart. Phys. 49 44Google Scholar

    [35]

    Agnes P, Alexander T, Alton A, et al. 2015 Phys. Lett. B 743 456Google Scholar

    [36]

    Aalseth C E, Acerbi F, Agnes P, et al. 2018 Eur. Phys. J. Plus 133 1Google Scholar

    [37]

    Rossi M 2021 Nuovo Cimento 44 1Google Scholar

    [38]

    Carnesecchi F 2020 J. Instrum. 15 C03038Google Scholar

    [39]

    Consiglio L 2020 J. Instrum. 15 C05063Google Scholar

    [40]

    Majorana E 1937 Nuovo Cimento 14 171Google Scholar

    [41]

    Abt I, Altmann M, Bakalyarov A, et al. 2004 arXiv: 0404.039v1 [hep-ex]

    [42]

    Simgen H 2005 Nucl. Phys. B Proc. Suppl. 143 567Google Scholar

    [43]

    Orrell J L, Aalseth C E, Amsbaugh J F, Doe P J, Hossbach T W 2007 Nucl. Instrum. Methods. Phys. Res., Sect. A 579 91Google Scholar

    [44]

    Heider M B 2009 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)

    [45]

    Agostini M, Barnabé-Heider M, Budjáš D, et al. 2015 Eur. Phys. J. C 75 1Google Scholar

    [46]

    Agostini M, Bakalyarov A M, Balata M, et al. 2018 Eur. Phys. J. C 78 1Google Scholar

    [47]

    Agostini M, Allardt M, Bakalyarov A M, et al. 2017 Nature 544 47Google Scholar

    [48]

    Hoppe E W, Aalseth C E, Farmer O T, Hossbach T W, Liezers M, Miley H S, Overman N R, Reeves J H 2014 Nucl. Instrum. Methods. Phys. Res., Sect. A 764 116Google Scholar

    [49]

    Schwarz M, Krause P, Leonhardt A, et al. 2021 EPJ Web Conf. 253 11014Google Scholar

    [50]

    Efremenko Y, Fajt L, Febbraro M, et al. 2019 J. Instrum. 14 P07006Google Scholar

    [51]

    Wang L, Yue Q, Kang K J, et al. 2017 Sci. Chin. Phys. Mech. 60 1Google Scholar

    [52]

    Wang Z, Yue Q, Kang K J, et al. 2013 Phys. Rev. D 88 052004Google Scholar

    [53]

    Yue Q, Wang Z, Kang K J, et al. 2014 Phys. Rev. D 90 091701Google Scholar

    [54]

    Yang L T, Li H B, Yue Q, et al. 2019 Phys. Rev. Lett. 123 221301Google Scholar

    [55]

    Jiang H, Jia L P, Yue Q, et al. 2018 Phys. Rev. Lett. 120 241301Google Scholar

    [56]

    She Z, Jia L P, Yue Q, et al. 2020 Phys. Rev. Lett. 124 111301Google Scholar

    [57]

    Dai W H, Ma H, Yue Q, et al. 2022 Phys. Rev. D 106 032012Google Scholar

    [58]

    Xiao M J, Xiao X, Zhao L, et al. 2014 Sci. Chin. Phys. Mech. 57 2024Google Scholar

    [59]

    Ni K X, Lai Y H, Abdukerim A, et al. 2019 Chin. Phys. C 43 113001Google Scholar

    [60]

    Cui X, Abdukerim A, Chen W, et al. 2017 Phys. Rev. Lett. 119 181302Google Scholar

    [61]

    Meng Y, Wang Z, Tao Y, et al. 2021 Phys. Rev. Lett. 127 261802Google Scholar

    [62]

    Wang S B 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 958 162439Google Scholar

    [63]

    Akimov D, Albert J B, An P, et al. 2017 Science 357 1123Google Scholar

    [64]

    Wei Y T, Guan M Y, Liu J C, Yu Z Y, Yang C G, Guo C, Xiong W X, Gan Y Y, Zhao Q, Li J J 2021 Radiat. Detect. Technol. 5 297Google Scholar

    [65]

    Guo C, Guan M Y, Sun X L, Xiong W X, Zhang P, Yang C G, Wei Y T, Gan Y Y, Zhao Q 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 980 164488Google Scholar

    [66]

    Wang L, Guan M Y, Qin H J, et al. 2021 J. Instrum. 16 P07021Google Scholar

    [67]

    Adams D Q, Alduino C, Alfonso K, et al. 2022 Nature 604 53Google Scholar

  • [1] Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng. Time of flight detector for charged particle identification based on circular electron-positron collider. Acta Physica Sinica, 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [2] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [3] Research of a THz accelerating and scanning high time resolution detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210871
    [4] Jin Ya-Qing, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang. Temporal filtering characteristics of gated InGaAs/InP single-photon detectors for coincidence measurement. Acta Physica Sinica, 2021, 70(7): 074202. doi: 10.7498/aps.70.20201648
    [5] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [6] Zhao Lei, Xu Miao-Hua, Zhang Yi-Hang, Zhang Zhe, Zhu Bao-Jun, Jiang Wei-Man, Zhang Xiao-Peng, Zhao Xu, Tong Bo-Wei, He Shu-Kai, Lu Feng, Wu Yu-Chi, Zhou Wei-Min, Zhang Fa-Qiang, Zhou Kai-Nan, Xie Na, Huang Zheng, Zhong Jia-Yong, Gu Yu-Qiu, Li Yu-Tong, Li Ying-Jun. Laser fast neutron measured by bubble detector. Acta Physica Sinica, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [7] Wen Zhi-Wen, Qi Hui-Rong, Wang Yan-Feng, Sun Zhi-Jia, Zhang Yu-Lian, Wang Hai-Yun, Zhang Jian, Ouyang Qun, Chen Yuan-Bo, Li Yu-Hong. Readout method for two-dimensional multi-wire proportional chamber. Acta Physica Sinica, 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [8] Wen Zhi-Wen, Qi Hui-Rong, Dai Hong-Liang, Zhang Yu-Lian, Zhang Jian, Wei Kun, Ouyang Qun, Shao Jian-Xiong. Modified method for diffraction aberration of one-dimensional wire chamber. Acta Physica Sinica, 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [9] Huang Jian-Wei, Wang Nai-Yan. Efficiency calibration for a NaI scintillation detector based on Monte-Carlo process and preliminary measurements of bremsstrahlung. Acta Physica Sinica, 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [10] Wang Lan-Xi, Chen Xue-Kang, Wu Gan, Cao Sheng-Zhu, Shang Kai-Wen. The influence of grain boundary on time response of diamond ultraviolet photo-detector. Acta Physica Sinica, 2012, 61(3): 038101. doi: 10.7498/aps.61.038101
    [11] Xu Miao-Hua, Li Hong-Wei, Liu Feng, Liu Bi-Cheng, Du Fei, Zhang Lu, Su Lu-Ning, Li Ying-Jun, Li Yu-Tong, Chen Jia-Er, Zhang Jie. Experimental studies of the characteristics of a real-time ion detector-plastic scintillator. Acta Physica Sinica, 2012, 61(10): 105202. doi: 10.7498/aps.61.105202
    [12] Lü Qi-Wen, Zheng Yang-Heng, Tai Cai-Xing, Liu Fu-Hu, Cai Xiao, Fang Jian, Gao Long, Ge Yong-Shuai, Liu Ying-Biao, Sun Li-Jun, Sun Xi-Lei, Niu Shun-Li, Wang Zhi-Gang, Xie Yu-Guang, Xue Zhen, Yu bo-Xiang, Zhang Ai-Wu, Hu Tao, Lü Jun-Guang. The study of time-resolved measurement using ICCD positioning cosmic rays. Acta Physica Sinica, 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [13] Zhang Xiao-Dong, Qiu Meng-Tong, Zhang Jian-Fu, Ouyang Xiao-Ping, Zhang Xian-Peng, Chen Liang. A fission neutron detector based on helium scintillator. Acta Physica Sinica, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [14] Li Cheng, Wang Mei, Yan Jie, Liu Rong, Jiang Li, Lu Xin-Xin. Response function and relative efficiency measurementsof the BC501A scintillator by usinga 252Cf fast fission chamber. Acta Physica Sinica, 2011, 60(3): 032901. doi: 10.7498/aps.60.032901
    [15] Hou Li-Fei, Li Fang, Yuan Yong-Teng, Yang Guo-Hong, Liu Shen-Ye. Chemical vapor deposited diamond detectors for soft X-ray power measurement. Acta Physica Sinica, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [16] Ma Hai-Qiang, Wang Su-Mei, Wu Ling-An. A single photon source based on entangled photon pairs. Acta Physica Sinica, 2009, 58(2): 717-721. doi: 10.7498/aps.58.717
    [17] Ouyang Xiao-Ping, Li Zhen-Fu, Ho Yu-Kun, Song Xian-Cai. φ60,1000 μm Si-PIN Detectors for pulsed γ flux measurement. Acta Physica Sinica, 2007, 56(3): 1353-1357. doi: 10.7498/aps.56.1353
    [18] Li Yuan, Li Gang, Zhang Yu-Chi, Wang Xiao-Yong, Wang Jun-Min, Zhang Tian-Cai. The effect of counting rate and time resolution on the measured photon statistical properties—— Experimental study of direct measurement via SPCM. Acta Physica Sinica, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [19] WU GUN-HUNG, WANG YUN-YU, TANG XIAO-WEI. MEASUREMENT OF 3γ ANNIHILATION OF POSITRON USING Ge (Li) DETECTOR. Acta Physica Sinica, 1983, 32(3): 417-422. doi: 10.7498/aps.32.417
    [20] XU PING-MAO. ANALYSIS OF THE BULK-ABSORBING PYROELECTRIC DETECTORS WITH EDGE ELECTRODES. Acta Physica Sinica, 1980, 29(11): 1445-1451. doi: 10.7498/aps.29.1445
Metrics
  • Abstract views:  4315
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  27 October 2022
  • Accepted Date:  10 December 2022
  • Available Online:  27 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回
Baidu
map