Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High endurance organic resistive switching memory based on 1, 2-dicyanobenzene and polymer composites

Li Wei Zhu Hui-Wen Sun Tong Qu Wen-Shan Li Jian-Gang Yang Hui Gao Zhi-Xiang Shi Wei Wei Bin Wang Hua

Citation:

High endurance organic resistive switching memory based on 1, 2-dicyanobenzene and polymer composites

Li Wei, Zhu Hui-Wen, Sun Tong, Qu Wen-Shan, Li Jian-Gang, Yang Hui, Gao Zhi-Xiang, Shi Wei, Wei Bin, Wang Hua
PDF
HTML
Get Citation
  • As the emerging data storage technology, organic resistive switching memory (ORSM) possesses numerous superiorities as the substitution for or the complementation of the traditional Si-based semiconductor memory. Poly(3-hexylthiophene) (P3HT) has been widely used as a polymer donor component of ORSMs due to its advantages of high mobility and high chemical stability. Up to now, ORSM based on P3HT has achieved high on/off current ratio (Ion/off), but the endurance still needs to be improved. Herein, high endurance ORSMs based on 1,2-dicyanobenzene (O-DCB) and P3HT composite are fabricated by spin coating and thermally evaporating, and exhibit non-volatile and bipolar memory characteristics. The ORSMs based on P3HT:15 wt.% O-DCB and P3HT:30 wt.% O-DCB exhibit the values of Ion/off exceeding 104 and 103 respectively, and both of them exert excellent endurance of 400 times, retention time of more than 105 s. The mechanism of the switching is explored by linear fitting of I-V curve and electrochemical impedance spectrum . The results indicate that the filling and vacant process of the charge traps induced by O-DCB and the inherent traps in P3HT bulk lead to a resistive switching effect. The negative or positive bias triggers off trapping and detrapping process, which leads the conductive way of charges to change, resulting in the resistive switching effect. The excellent endurance of ORSM is attributed to the uniform distribution of O-DCB in P3HT bulk because of the small molecular size and high solubility of O-DCB, resulting in well-distributed and stable charge traps. On the other hand, the out-bound planarity of O-DCB molecular promotes the close interaction with the conjugated chains of P3HT. This study enlightens an effective strategy to carry out high-endurance ORSM and facilitates their electronic applications in future.
      Corresponding author: Gao Zhi-Xiang, 03100012@sxdtdx.edu.cn ; Shi Wei, shiwei@shu.edu.cn
    • Funds: Project supported by the Applied Basic Research Project of Shanxi Province (Grant No. 201901D111316), the Science and technology innovation project of Shanxi Colleges and Universities (Grant No. 2020L0488), the Datong City Key Industry Research Project (Grant No. 2019015), the Graduate Education Innovation Project of Shanxi Province (Grant No.2022Y761), and the Graduate Education Innovation Project of Shanxi Datong University (Grant Nos. 22CX02, 22CX16).
    [1]

    Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H, Zhou P 2020 InfoMat 2 261Google Scholar

    [2]

    Service R F 2018 Science 361 321Google Scholar

    [3]

    Debenedictis E P 2019 Computer 52 114Google Scholar

    [4]

    Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar

    [5]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951Google Scholar

    [6]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [7]

    Gismatulin A A, Orlov O M, Gritsenko V A, Kruchinin V N, Mizginov D S, Krasnikov G Y 2020 Appl. Phys. Lett. 116 203502Google Scholar

    [8]

    Younis A, Lin C H, Guan X, Shahrokhi S, Huang C Y, Wang Y, He T, Singh S, Hu L, Retamal J R D, He J H, Wu T 2021 Adv. Mater. 33 2005000Google Scholar

    [9]

    朱佳雪, 张续猛, 王睿, 刘琦 2022 71 148503Google Scholar

    Zhu J X, Zhang X M, Wang R, Liu Q 2022 Acta Phys. Sin. 71 148503Google Scholar

    [10]

    古亚娜, 梁燕, 王光义, 夏晨阳 2022 71 110501Google Scholar

    Gu Y N, Liang Y, Wang G Y, Xia C Y 2022 Acta Phys. Sin. 71 110501Google Scholar

    [11]

    Paul F, Paul S 2022 Small 18 2106442Google Scholar

    [12]

    Lee J H, Park S P, Park K, Kim H J 2019 Adv. Funct. Mater. 30 1907437

    [13]

    Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [14]

    卢颖, 陈威林, 高双, 李润伟 2020 材料导报 34 1146Google Scholar

    Lu Y, Chen W L, Gao S, Li R W 2020 Mat. Rep. 34 1146Google Scholar

    [15]

    陈威林, 高双, 伊晓辉, 尚杰, 刘钢, 李润伟 2019 功能高分子学报 32 434

    Chen W L, Gao S, Yi X H, Shang J, Liu G, Li R W 2019 J. Funct. Polym. 32 434

    [16]

    Lian H, Cheng X Z, Hao H T, Han J B, Lau M T, Li Z K, Zhou Z, Dong Q C, Wong W Y 2022 Chem. Soc. Rev. 51 1926Google Scholar

    [17]

    孙艳梅 2017 博士学位论文 (哈尔滨: 黑龙江大学)

    Sun Y M 2017 Ph. D. Dissertation (Haerbin: Heilongjiang University) (in Chinese)

    [18]

    朱志强 2021 硕士学位论文 (常州: 常州大学)

    Zhu Z Q 2021 M.S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [19]

    Hou J, Zhang B, Li D, Fu Y, Liu G, Chen Y 2019 J. Mater. Chem. C 7 14664Google Scholar

    [20]

    Narasimhan Arunagirinathan R, Gopikrishna P, Das D, Iyer P K 2019 ACS Appl. Electron. Mater. 1 600Google Scholar

    [21]

    Sun Y, Li L, Wen D, Bai X 2015 J. Phys. Chem. C 119 19520Google Scholar

    [22]

    Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A 2014 Energy Environ. Sci. 7 925Google Scholar

    [23]

    Li Y, Zhang Y, Wu B, Pang S, Yuan X, Duan C, Huang F, Cao Y 2022 Solar RRL 2200073

    [24]

    Xian K, Liu Y, Liu J, Yu J, Xing Y, Peng Z, Zhou K, Gao M, Zhao W, Lu G, Zhang J, Hou J, Geng Y, Ye L 2022 J. Mater. Chem. A 10 3418Google Scholar

    [25]

    Liu M, Fan Q, Yang K, Zhao Z, Zhao X, Zhou Z, Zhang J, Lin F, Jen A K Y, Zhang F 2022 Sci. China Chem. 65 1642Google Scholar

    [26]

    Song J, Guo T, Huang C, Liu M, Cui H, Huang W, Wang Y, Li T 2022 Chem. Eng. J. 446

    [27]

    Chaudhary D, Munjal S, Khare N, Vankar V D 2018 Carbon 130 553Google Scholar

    [28]

    Jin Z, Liu G, Wang J 2013 AIP Adv. 3 052113Google Scholar

    [29]

    Liang J, Su Y, Lin Q, Zhou H, Zhang S, Pei Y, Hu R 2014 Semicond. Sci. Technol. 29 115029Google Scholar

    [30]

    Sherazi S S H, Rehman M M, Ur Rehman H M M, Kim W Y, Siddiqui G U, Karimov K S 2020 Semicond. Sci. Technol. 35 125012Google Scholar

    [31]

    Sim R, Ming W, Setiawan Y, Lee P S 2012 J. Phys. Chem. C 117 677

    [32]

    Wang P, Liu Q, Zhang C Y, Jiang J, Wang L H, Chen D Y, Xu Q F, Lu J M 2015 Nanoscale 7 19579Google Scholar

    [33]

    丛麟权, 李文骁, 马瑛, 曲旭坡, 邢颖 2020 染料与染色 57 24

    Cong L Q, Li W X, Ma Y, Qu X P, Xing Y 2020 Dyestuffs and Coloration 57 24

    [34]

    王述 1983 辽宁化工 56

    Wang S 1983 Liaoning Chem. Ind. 56 (in Chinses)

    [35]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [36]

    Yuan J, Wang Y, Li L, Wang S, Tang X, Wang H, Li M, Zheng C, Chen R 2020 J. Phys. Chem. C 124 10129Google Scholar

    [37]

    Zhang L, Li Y, Shi J, Shi G, Cao S 2013 Mater. Chem. Phys. 142 626Google Scholar

    [38]

    Wu J Y, Lai T H, Fang M J, Chen J Y, Kuo M Y, Chiu Y H, Hsieh P Y, Tsao C W, Chang H E, Chang Y P, Wang C Y, Chen C Y, Sone M, Wu W W, Chang T F M, Hsu Y J 2022 ACS Appl. Nano Mater. 5 8404Google Scholar

    [39]

    Khan M U, Hassan G, Raza M A, Bae J, Kobayashi N P 2019 J. Mater. Sci.: Mater. Electron. 30 4607Google Scholar

    [40]

    Rose A 1955 Phys. Rev. 97 1538Google Scholar

    [41]

    Cölle M, Büchel M, De Leeuw D M 2006 Org. Electron. 7 305Google Scholar

    [42]

    Jiang X L, Zhao Y G, Chen Y S, Li D, Luo Y X, Zhao D Y, Sun Z, Sun J R, Zhao H W 2013 Appl. Phys. Lett. 102 253507Google Scholar

    [43]

    Pan S, Zhu Z, Yu H, Lan W, Wei B, Guo K 2021 J. Mater. Chem. C 9 5643Google Scholar

    [44]

    Yamazaki Y, Yamashita K, Tani Y, Aoyama T, Ogawa T 2020 J. Mater. Chem. C 8 14423Google Scholar

    [45]

    Barsukov Y, Macdonald J 2005 Impedance Spectroscopy: Theory, Experiment, and Applications (New Jersey: Wiley-Interscience) pp1–528

    [46]

    Zhou G, Yao Y, Lu Z, Yang X, Han J, Wang G, Rao X, Li P, Liu Q, Song Q 2017 Nanotechnology 28 425202Google Scholar

    [47]

    Lai Y C, Ohshimizu K, Lee W Y, Hsu J C, Higashihara T, Ueda M, Chen W C 2011 J. Mater. Chem. 21 14502Google Scholar

    [48]

    Chen J C, Liu C L, Sun Y S, Tung S H, Chen W C 2012 Soft Matter 8 526Google Scholar

    [49]

    Lian S L, Liu C L, Chen W C 2011 ACS Appl. Mater. Interfaces 3 4504Google Scholar

    [50]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

    [51]

    Meyer E A, Castellano R K, Diederich F 2003 Angew. Chem., Int. Ed. Engl. 42 1210Google Scholar

  • 图 1  (a) P3HT和O-DCB的分子结构; (b) ORSM器件结构

    Figure 1.  (a) Chemical structures of P3HT and O-DCB; (b) schematic diagram of the ORSM.

    图 2  (a) O-DCB的吸收光谱、激发光谱和发射光谱; P3HT, P3HT: 15% O-DCB和P3HT: 30% O-DCB的 (b) 吸收光谱和 (c) 荧光光谱; P3HT, P3HT: 15% O-DCB, P3HT: 30% O-DCB和P3HT: 45% O-DCB薄膜的AFM形貌图; P3HT: 15% O-DCB和P3HT: 30% O-DCB薄膜S和N元素的分布图

    Figure 2.  (a) Absorption, excitation and emission spectra of O-DCB; (b) normalized UV-vis absorption spectra and (c) PL spectra of P3HT, P3HT: 15% O-DCB and P3HT: 30% O-DCB. AFM images of (d) P3HT, (e) P3HT: 15% O-DCB, (f) P3HT: 30% O-DCB, and (g) P3HT: 45% O-DCB films. Distribution maps of S and N elements of (h)(i) P3HT: 15% O-DCB and (j)(k) P3HT: 30% O-DCB films.

    图 3  (a) P3HT, (b) P3HT: 15% O-DCB, (c) P3HT: 30% O-DCB, (d) P3HT: 45% O-DCB器件的I-V特性; (e) P3HT: 15% O-DCB和 (f) P3HT: 30% O-DCB器件的Ion/off-V特性; (g) P3HT: 15% O-DCB和 (h) P3HT: 30% O-DCB器件的切换速度测试

    Figure 3.  I-V characterizations of devices with (a) P3HT, (b) P3HT:15% O-DCB, (c) P3HT:30% O-DCB, and (d) P3HT:45% O-DCB. Ion/off-V characterizations of devices with (e) P3HT:15% O-DCB and (f) P3HT:30% O-DCB. Switching speed test of devices with (g) P3HT:15% O-DCB and (h) P3HT:30% O-DCB.

    图 4  (a)—(c) D1和 (d)—(f) D2的 (a)(d) 耐久性、(b)(e) 保持性和 (c)(f) 脉冲周期、宽度、电压为4 μs、4 μs和–1 V时的读脉冲稳定性测试

    Figure 4.  (a)(d) Endurance cycles test, (b)(e) retention time test, and (c)(f) reading pulse test with the pulse period and width of 4 μs and 4 μs and the voltage of –1 V of (a)–(c) D1 and (d)–(f) D2.

    图 5  (a) D1和 (b) D2的I-V曲线的线性拟合结果; (c) P3HT器件以及 (d)(f) D1和 (e)(g) D2分别在(d)(e) LRS和(f)(g) HRS的Nyquist图; (h) 阻抗的虚部与频率关系图

    Figure 5.  Linear fitting of the I-V curves of (a) D1 and (b) D2. Nyquist plots of (c) P3HT based device, (d)(f) D1 and (e)(g) D2 in (d)(e) LRS and (f)(g) HRS; (h) plots of the imaginary part of the impedance vs. frequency of devices in LRS.

    图 6  (a) ORSM的能级结构图; (b)—(f)器件的阻变机理示意图 (b) 陷阱电荷俘获阶段; (c) 陷阱填满阶段; (d) 陷阱电荷去俘获阶段; (e) 空陷阱阶段; (f) 电流泄露

    Figure 6.  (a) Energy diagram of the ORSM; (b)–(f) Schematic illustration of the switching mechanism: Charge transfer processes of (b) trap filling, (c) fully filling trap, (d) trap pumping, (e) vacant trap, and (f) current leakage.

    表 1  D1和D2的器件参数汇总

    Table 1.  Summary of device parameters for D1 and D2.

    器件Vset/VVreset/VIon/off耐久性保持性/s存储类型
    D1–6.92.61.5×104400105Flash
    D2–6.22.81.0×103400105Flash
    DownLoad: CSV
    Baidu
  • [1]

    Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H, Zhou P 2020 InfoMat 2 261Google Scholar

    [2]

    Service R F 2018 Science 361 321Google Scholar

    [3]

    Debenedictis E P 2019 Computer 52 114Google Scholar

    [4]

    Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar

    [5]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951Google Scholar

    [6]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [7]

    Gismatulin A A, Orlov O M, Gritsenko V A, Kruchinin V N, Mizginov D S, Krasnikov G Y 2020 Appl. Phys. Lett. 116 203502Google Scholar

    [8]

    Younis A, Lin C H, Guan X, Shahrokhi S, Huang C Y, Wang Y, He T, Singh S, Hu L, Retamal J R D, He J H, Wu T 2021 Adv. Mater. 33 2005000Google Scholar

    [9]

    朱佳雪, 张续猛, 王睿, 刘琦 2022 71 148503Google Scholar

    Zhu J X, Zhang X M, Wang R, Liu Q 2022 Acta Phys. Sin. 71 148503Google Scholar

    [10]

    古亚娜, 梁燕, 王光义, 夏晨阳 2022 71 110501Google Scholar

    Gu Y N, Liang Y, Wang G Y, Xia C Y 2022 Acta Phys. Sin. 71 110501Google Scholar

    [11]

    Paul F, Paul S 2022 Small 18 2106442Google Scholar

    [12]

    Lee J H, Park S P, Park K, Kim H J 2019 Adv. Funct. Mater. 30 1907437

    [13]

    Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [14]

    卢颖, 陈威林, 高双, 李润伟 2020 材料导报 34 1146Google Scholar

    Lu Y, Chen W L, Gao S, Li R W 2020 Mat. Rep. 34 1146Google Scholar

    [15]

    陈威林, 高双, 伊晓辉, 尚杰, 刘钢, 李润伟 2019 功能高分子学报 32 434

    Chen W L, Gao S, Yi X H, Shang J, Liu G, Li R W 2019 J. Funct. Polym. 32 434

    [16]

    Lian H, Cheng X Z, Hao H T, Han J B, Lau M T, Li Z K, Zhou Z, Dong Q C, Wong W Y 2022 Chem. Soc. Rev. 51 1926Google Scholar

    [17]

    孙艳梅 2017 博士学位论文 (哈尔滨: 黑龙江大学)

    Sun Y M 2017 Ph. D. Dissertation (Haerbin: Heilongjiang University) (in Chinese)

    [18]

    朱志强 2021 硕士学位论文 (常州: 常州大学)

    Zhu Z Q 2021 M.S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [19]

    Hou J, Zhang B, Li D, Fu Y, Liu G, Chen Y 2019 J. Mater. Chem. C 7 14664Google Scholar

    [20]

    Narasimhan Arunagirinathan R, Gopikrishna P, Das D, Iyer P K 2019 ACS Appl. Electron. Mater. 1 600Google Scholar

    [21]

    Sun Y, Li L, Wen D, Bai X 2015 J. Phys. Chem. C 119 19520Google Scholar

    [22]

    Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A 2014 Energy Environ. Sci. 7 925Google Scholar

    [23]

    Li Y, Zhang Y, Wu B, Pang S, Yuan X, Duan C, Huang F, Cao Y 2022 Solar RRL 2200073

    [24]

    Xian K, Liu Y, Liu J, Yu J, Xing Y, Peng Z, Zhou K, Gao M, Zhao W, Lu G, Zhang J, Hou J, Geng Y, Ye L 2022 J. Mater. Chem. A 10 3418Google Scholar

    [25]

    Liu M, Fan Q, Yang K, Zhao Z, Zhao X, Zhou Z, Zhang J, Lin F, Jen A K Y, Zhang F 2022 Sci. China Chem. 65 1642Google Scholar

    [26]

    Song J, Guo T, Huang C, Liu M, Cui H, Huang W, Wang Y, Li T 2022 Chem. Eng. J. 446

    [27]

    Chaudhary D, Munjal S, Khare N, Vankar V D 2018 Carbon 130 553Google Scholar

    [28]

    Jin Z, Liu G, Wang J 2013 AIP Adv. 3 052113Google Scholar

    [29]

    Liang J, Su Y, Lin Q, Zhou H, Zhang S, Pei Y, Hu R 2014 Semicond. Sci. Technol. 29 115029Google Scholar

    [30]

    Sherazi S S H, Rehman M M, Ur Rehman H M M, Kim W Y, Siddiqui G U, Karimov K S 2020 Semicond. Sci. Technol. 35 125012Google Scholar

    [31]

    Sim R, Ming W, Setiawan Y, Lee P S 2012 J. Phys. Chem. C 117 677

    [32]

    Wang P, Liu Q, Zhang C Y, Jiang J, Wang L H, Chen D Y, Xu Q F, Lu J M 2015 Nanoscale 7 19579Google Scholar

    [33]

    丛麟权, 李文骁, 马瑛, 曲旭坡, 邢颖 2020 染料与染色 57 24

    Cong L Q, Li W X, Ma Y, Qu X P, Xing Y 2020 Dyestuffs and Coloration 57 24

    [34]

    王述 1983 辽宁化工 56

    Wang S 1983 Liaoning Chem. Ind. 56 (in Chinses)

    [35]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [36]

    Yuan J, Wang Y, Li L, Wang S, Tang X, Wang H, Li M, Zheng C, Chen R 2020 J. Phys. Chem. C 124 10129Google Scholar

    [37]

    Zhang L, Li Y, Shi J, Shi G, Cao S 2013 Mater. Chem. Phys. 142 626Google Scholar

    [38]

    Wu J Y, Lai T H, Fang M J, Chen J Y, Kuo M Y, Chiu Y H, Hsieh P Y, Tsao C W, Chang H E, Chang Y P, Wang C Y, Chen C Y, Sone M, Wu W W, Chang T F M, Hsu Y J 2022 ACS Appl. Nano Mater. 5 8404Google Scholar

    [39]

    Khan M U, Hassan G, Raza M A, Bae J, Kobayashi N P 2019 J. Mater. Sci.: Mater. Electron. 30 4607Google Scholar

    [40]

    Rose A 1955 Phys. Rev. 97 1538Google Scholar

    [41]

    Cölle M, Büchel M, De Leeuw D M 2006 Org. Electron. 7 305Google Scholar

    [42]

    Jiang X L, Zhao Y G, Chen Y S, Li D, Luo Y X, Zhao D Y, Sun Z, Sun J R, Zhao H W 2013 Appl. Phys. Lett. 102 253507Google Scholar

    [43]

    Pan S, Zhu Z, Yu H, Lan W, Wei B, Guo K 2021 J. Mater. Chem. C 9 5643Google Scholar

    [44]

    Yamazaki Y, Yamashita K, Tani Y, Aoyama T, Ogawa T 2020 J. Mater. Chem. C 8 14423Google Scholar

    [45]

    Barsukov Y, Macdonald J 2005 Impedance Spectroscopy: Theory, Experiment, and Applications (New Jersey: Wiley-Interscience) pp1–528

    [46]

    Zhou G, Yao Y, Lu Z, Yang X, Han J, Wang G, Rao X, Li P, Liu Q, Song Q 2017 Nanotechnology 28 425202Google Scholar

    [47]

    Lai Y C, Ohshimizu K, Lee W Y, Hsu J C, Higashihara T, Ueda M, Chen W C 2011 J. Mater. Chem. 21 14502Google Scholar

    [48]

    Chen J C, Liu C L, Sun Y S, Tung S H, Chen W C 2012 Soft Matter 8 526Google Scholar

    [49]

    Lian S L, Liu C L, Chen W C 2011 ACS Appl. Mater. Interfaces 3 4504Google Scholar

    [50]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

    [51]

    Meyer E A, Castellano R K, Diederich F 2003 Angew. Chem., Int. Ed. Engl. 42 1210Google Scholar

  • [1] Wang Chang-Chao, Nie Qing-Miao, Shi Liang, Chen Nai-Bo, Hu Lai-Gui, Yan Bo. Kinetic Monte Carlo simulation of selective area growth of mix deposited organic molecules. Acta Physica Sinica, 2024, 73(12): 126801. doi: 10.7498/aps.73.20231779
    [2] Ke Qing, Dai Yue-Hua. Kinetics study of ions in conductive filament growth process of electrochemical metallization resistive memory. Acta Physica Sinica, 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [3] Liu Li-Juan, Kong Xiao-Bo, Liu Yong-Gang, Xuan Li. Enhancement of conversion efficiency for an organic semiconductor laser based on a holographic polymer dispersed liquid crystal. Acta Physica Sinica, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [4] Guo Yu-Qi, Pan Jun-Xing, Zhang Jin-Jun, Sun Min-Na, Wang Bao-Feng, Wu Hai-Shun. Multi-scale ordered patterns in photosensitive ternary polymer mixtures. Acta Physica Sinica, 2016, 65(5): 056401. doi: 10.7498/aps.65.056401
    [5] Dai Yue-Hua, Pan Zhi-Yong, Chen Zhen, Wang Fei-Fei, Li Ning, Jin Bo, Li Xiao-Feng. Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study. Acta Physica Sinica, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [6] Fan Chang-Jun, Wang Rui-Xue, Liu Zhen, Lei Yong, Li Guo-Qing, Xiong Zu-Hong, Yang Xiao-Hui. Phosphorescent hybrid organic-inorganic light emitting devices with solution-processed small molecule emissive layers. Acta Physica Sinica, 2015, 64(16): 167801. doi: 10.7498/aps.64.167801
    [7] Chai Yu-Hua, Guo Yu-Xiu, Bian Wei, Li Wen, Yang Tao, Yi Ming-Dong, Fan Qu-Li, Xie Ling-Hai, Huang Wei. Progress of flexible organic non-volatile memory field-effect transistors. Acta Physica Sinica, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [8] Xu Zhong-Hua, Chen Wei-Bing, Ye Wei-Qiong, Yang Wei-Feng. A Study of tandem structure organic solar cells composed of polymer and small molecular sub-cells. Acta Physica Sinica, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [9] Zhang Zhao-Hui, Li Hai-Peng, Han Kui. Relations between the structure, symmetry and the energy mechanism of the polar-organic molecule ultra-films during the tribology. Acta Physica Sinica, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [10] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [11] Rong Jia-Ling, Chen Yun-Han, Zhou Jie, Zhang Xue, Wang Li, Cao Jin. SPICE simulation of organic resistive memory with structure of ITO/polymethylmethacrylate/Al. Acta Physica Sinica, 2013, 62(22): 228502. doi: 10.7498/aps.62.228502
    [12] Xu Yu-Li, Chen Xue-Qian, Chen Hou-Yang, Xu Shou-Hong, Liu Hong-Lai. Selective adsorption of small molecules on grafted polymers. Acta Physica Sinica, 2011, 60(11): 117104. doi: 10.7498/aps.60.117104
    [13] Sun Zhuan-Lan, Zhang Xiao-Qing, Cao Gong-Xun, Wang Xue-Wen, Xia Zhong-Fu. Preparation and piezoelectricity of fluorocarbon polymer piezoelectret films with ordered void structure. Acta Physica Sinica, 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [14] Liu Wei, Fan Rong-Wei, Li Xiao-Hui, Chen Hui, Xia Yuan-Qin, Chen De-Ying. Properties of improved polymer host solid-state dye laser. Acta Physica Sinica, 2007, 56(9): 5276-5280. doi: 10.7498/aps.56.5276
    [15] Nie Hai, Zhang Bo, Tang Xian-Zhong. Electroluminescence of polymer doped small-molecules light-emitting diodes and the effects of doping trap. Acta Physica Sinica, 2007, 56(1): 263-267. doi: 10.7498/aps.56.263
    [16] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [17] XU ZE-DA, CAI ZHI-GANG, ZHANG LING-ZHI, LIU YAN-FA, YANG JIE, SHE WEI-LONG, ZHOU JIAN-YING. PATTERN FORMATION AND QUASICRYSTAL STRUTURE IN AZOBENZENE POLYMER FILM. Acta Physica Sinica, 2000, 49(6): 1091-1093. doi: 10.7498/aps.49.1091
    [18] REN LI-YONG, YAO BAO-LI, HOU XUN, YI WEN-HUI, WANG MIN-QIANG. EXPERIMENT AND THEORY ON DIFFRACTION FROM LASER-INDUCED PHASE-HOLE IN POLYMER FI LM. Acta Physica Sinica, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
    [19] WU CHANG-QIN, ZHANG YU-ZHONG, FU RONG-TANG, SUN XIN. A PRIMARY MODEL INVESTIGATION OF ORGANIC FERROMAGNETS. Acta Physica Sinica, 1999, 48(4): 713-720. doi: 10.7498/aps.48.713
    [20] FU RONG-TANG, WANG XIAO-DONG, SUN XIN, Y.KAWAZOE. AB INITIO INVESTIGATIONS IN ORGANIC FERROMAGNET. Acta Physica Sinica, 1998, 47(11): 1840-1846. doi: 10.7498/aps.47.1840
Metrics
  • Abstract views:  3793
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2022
  • Accepted Date:  04 December 2022
  • Available Online:  17 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回
Baidu
map