-
Multi-scale ordered patterns of multi-component polymer mixtures can reveal many peculiar chemical and physical properties, which makes these systems have very important potential applications in materials engineering. Via computer simulation, we create interesting ordered multi-scale structures in photosensitive and immiscible polymer mixtures. The system that we employed comprises a ternary, molten A/B/C polymer blends and the three components are mutually immiscible. Polymer C is non-optically active, while polymers A and B can exhibit reversible chemical reaction A ⇆ B induced by light. Firstly, we investigate the phase behavior of the ternary blend guided by cross-stripy mask and light, and find that a chessboard-like ordered pattern forms in the mixture before removing the mask. In the illuminated regions, the A and C components gather into ellipsoidal core-shell structures in the uncrossed illuminated area, while the A and B components gather into star structures in the crossed stripes regions. When we remove the mask, the entire system becomes illuminated, and the reaction A ⇆ B occurs throughout the film: the ellipsoidal core-shell structures of A and C components turn to spherical structures, and the star structures of A and B components turn into concentric square ring structures. Then we show the influences of the number of cross stripes and the initial composition on the formation of structure. The average spatial volume fraction of C component first increases and then decreases with the stripy number increasing and the C component net lattices play an important role in the stability of ordered structures. Secondly, when the blend is covered by the annular mask, the C component gathers to the illuminated regions and the A and B components are in radial arrangement. As a result, the mixture forms an interesting dartboard-like pattern. However, when the mask is removed, the photochemical reactions occur in the A and B components of the whole region, the increasing of free energy induces the dartboard-like pattern to be broken and to change into dots-ring structure and then it forms a perfect concentric ring pattern and the target-like pattern. And also, we show the effects of initial composition ratio of C component, the distance between two adjacent rings D, the ring width d, and the illumination intensity on the evolution of ordered structure. The larger the initial composition ratio of C component, the more easily the ordered target-like pattern forms; the larger the distance D and the smaller the width d, the better the pinning effect of C component is. The illumination intensity has little influence on the ordered morphology of the ternary system. We provide a simple approach to creating multi-scale patterned films with long-range order, which could guide us in fabricating nanoscale devices.
-
Keywords:
- multi-scale /
- ordered pattern /
- polymer mixture /
- photoreaction
[1] Sun M N, Zhang J J, Wang B F, Wu H S, Pan J X 2011 Phys. Rev. E 84 011812
[2] Jang S G, Khan A, Dimitriou M D, Kim B J, Lynd N A, Kramer E J, Hawker C J 2011 Soft Matter 7 6255
[3] Parnell A J, Pryke A, Mykhaylyk O O, Howse J R, Adawi A M, Terrill N J, Fairclough J P A 2011 Soft Matter 7 3721
[4] Hong S W, Gu X D, Huh J, Xiao S G, Russell T P 2011 ACS Nano 5 2855
[5] Bates F S, Maurer W, Lodge T P, Schulz MF, Matsen M W, Almdal K, Mortensen K 1995 Phys. Rev. Lett. 75 4429
[6] Zhang J J, Jin G J, Ma Y Q 2006 J. Phys.: Condens. Matter 18 837
[7] Ruokolainen J, Mäkinen R, Torkkeli M, Mäkelä T, Serimaa R, ten Brinke G, Ikkala O 1998 Science 280 557
[8] Ruokolainen J, Saariaho M, Ikkala O 1999 Macromolecules 32 1152
[9] Travasso R D M, Kuksenok O, Balazs A C 2005 Langmuir 21 10912
[10] Kuksenok O, Travasso R D M, Balazs A C 2006 Phys. Rev. E 74 011502
[11] Travasso R D M, Kuksenok O, Balazs A C 2006 Langmuir 22 2620
[12] Puri S, Kumar D 2004 Phys. Rev. E 70 051501
[13] Lakshmi K C, Kumar P B S 2003 Phys. Rev. E 67 011507
[14] Tafa K, Puri S, Kumar D 2001 Phys. Rev. E 64 056139
[15] Ma Y Q 2001 J. Chem. Phys. 114 3734
[16] Huang C, de la Cruz M O, Swift B W 1996 Macromolecules 28 7996
[17] Zhang L C, Sun M N, Pan J X, Wang B F, Zhang J J, Wu H S 2013 Chin. Phys. B 22 096401
[18] Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. B 22 026401
[19] Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. Lett. 30 046401
[20] Pinna M, Hiltl S, Guo X H, Böker A, Zvelindovsky A V 2010 ACS Nano 4 2845
[21] Chen H Y, Peng C J, Sun L, Liu H L, Hu Y 2007 Langmuir 23 11112
[22] Chen H Y, Chen X Q, Ye Z C, Liu H L, Hu Y 2010 Langmuir 26 6663
[23] Hao Q H, Miao B, Song Q G, Niu X H, Liu T J 2014 Polymer 55 4281
[24] Xu Y C, Li W H, Qiu F, Lin Z Q 2014 Nanoscale 6 6844
[25] Li M, Zhu Y J 2008 Acta Phys. Sin. 57 7555 (in Chinese) [李明, 诸跃进 2008 57 7555]
[26] Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝焕平, 章林溪 2012 61 058701]
[27] Zhang J J, Jin G J, Ma Y Q 2005 Phys. Rev. E 71 051803
[28] Pinna M, Zvelindovsky A V 2008 Soft Matter 4 316
[29] Xu T, Craig J H, Russell T P 2003 Macromolecules 36 6178
[30] Böker A, Schmidt K, Knoll A, Zettl H, Hansel H, Urban V, Abetz V, Krausch G 2006 Polymer 47 849
[31] Schmidt K, Böker A, Zettl H, Schubert F, Hänsel H, Fischer F, Weiss T M, Abetz V, Zvelindovsky A V, Sevink G J A, Krausch G 2005 Langmuir 21 11974
[32] Hong Y R, Admson D H, Chainkin P M, Register R A 2009 Soft Matter 5 1687
[33] Chen K, Ma Y Q 2002 J. Chem. Phys. 116 7783
[34] Morozov A N, Zvelindovsky A V, Fraaije J G E M 2001 Phys. Rev. E 64 051803
[35] Morozov A N, Fraaije J G E M 2002 Phys. Rev. E 65 031803
[36] You L Y, Chen L J, Qian H J, Lu Z Y 2007 Macromolecules 40 5222
[37] Pan Z Q, He L L, Zhang L X, Liang H J 2011 Polymer 52 2711
[38] Nikoubashman A, Davis R L, Michal B T, Chaikin P M, Register R A, Panagiotopoulos A Z 2014 ACS Nano 8 8015
[39] Nikoubashman A, Register R A, Panagiotopoulos A Z 2013 Soft Matter 9 9960
[40] Guo Y Q, Zhang J J, Wang B F, Wu H S, Sun M N, Pan J X 2015 Condens. Matter Phys. 18 23801
[41] Peng G W, Qiu F, Ginzburg V V, Jasnow D, Balazs A C 2000 Science 288 1802
[42] Deng Z Y, Zhang L X 2015 Acta Phys. Sin. 64 0168201 (in Chinese) [邓真渝, 章林溪 2015 64 0168201]
[43] Chen K, Ma Y Q 2002 Phys. Rev. E 65 041501
[44] Zhu Y J, Ma Y Q 2003 Chin. Phys. Lett. 20 703
[45] Zhang J J, Jin G J, Ma Y Q 2005 Eur. Phys. J. E 18 359
[46] Liu Y, Kuksenok O, Balazs A C 2013 Langmuir 29 750
[47] Dayal P, Kuksenok O, Balazs A C 2008 Langmuir 24 1621
[48] Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. Lett. 30 076401
[49] Grzybowski B A, Campbell C J 2007 Mater. Today 10 38
[50] Glotzer S C, Stauffer D, Jan N 1994 Phys. Rev. Lett. 72 4109
[51] Qiu T C, Kawai J J, Endoh K 1999 Chaos 9 298
[52] Colvin V L, Larson R G, Harris A L, Schilling M L 1997 J. Appl. Phys. 81 5913
[53] Kellogg G J, Walton D G, Mayes A M 1996 Phys. Rev. Lett. 76 2503
[54] Christensen J J, Elder K, Fogedby H C 1996 Phys. Rev. E 54 R2212
[55] Glotzer S C, Marzio E A Di, Muthukumar M 1995 Phys. Rev. Lett. 74 2034
[56] Purit S, Frisch H L 1994 J. Phys. A: Math. Gen. 27 6027
[57] Tran C Q, Kawai J J, Nishikawa Y, Jinnai H 1999 Phys. Rev. E 60 R1150
[58] Nishioka H, Kida K, Yano O, Tran C Q 2000 Macromolecules 33 4301
[59] Liu B, Tong C H, Yang Y L 2001 J. Phys. Chem.B 105 10091
[60] Tong C H, Yang Y L 2002 J. Chem. Phys. 116 1519
[61] Tong C H, Zhang H D, Yang Y L 2002 J. Phys. Chem. B 106 7869
[62] Zhu Y J, Ma Y Q 2003 Phys. Rev. E 67 021804
[63] Okuzono T, Ohta T 2003 Phys. Rev. E 67 056211
[64] Good K, Kuksenok O, Buxton G A, Ginzburg V V, Balazs A C 2004 J. Chem. Phys. 121 6052
[65] Nakanishi H, Satoh M, Norisuye T, Tran C Q 2004 Macromolecules 37 8495
[66] Oono Y, Puri S 1987 Phys. Rev. Lett. 58 836
[67] Puri S, Oono Y 1988 Phys. Rev. A 38 1542
[68] Oono Y, Puri S 1988 Phys. Rev. A 38 434
[69] Travasso R D M, Buxton G A, Kuksenok O, Good K, Balazs A C 2005 J. Chem. Phys. 122 194906 ten Brinke G, Ikkala O 1998 Science 280 557
-
[1] Sun M N, Zhang J J, Wang B F, Wu H S, Pan J X 2011 Phys. Rev. E 84 011812
[2] Jang S G, Khan A, Dimitriou M D, Kim B J, Lynd N A, Kramer E J, Hawker C J 2011 Soft Matter 7 6255
[3] Parnell A J, Pryke A, Mykhaylyk O O, Howse J R, Adawi A M, Terrill N J, Fairclough J P A 2011 Soft Matter 7 3721
[4] Hong S W, Gu X D, Huh J, Xiao S G, Russell T P 2011 ACS Nano 5 2855
[5] Bates F S, Maurer W, Lodge T P, Schulz MF, Matsen M W, Almdal K, Mortensen K 1995 Phys. Rev. Lett. 75 4429
[6] Zhang J J, Jin G J, Ma Y Q 2006 J. Phys.: Condens. Matter 18 837
[7] Ruokolainen J, Mäkinen R, Torkkeli M, Mäkelä T, Serimaa R, ten Brinke G, Ikkala O 1998 Science 280 557
[8] Ruokolainen J, Saariaho M, Ikkala O 1999 Macromolecules 32 1152
[9] Travasso R D M, Kuksenok O, Balazs A C 2005 Langmuir 21 10912
[10] Kuksenok O, Travasso R D M, Balazs A C 2006 Phys. Rev. E 74 011502
[11] Travasso R D M, Kuksenok O, Balazs A C 2006 Langmuir 22 2620
[12] Puri S, Kumar D 2004 Phys. Rev. E 70 051501
[13] Lakshmi K C, Kumar P B S 2003 Phys. Rev. E 67 011507
[14] Tafa K, Puri S, Kumar D 2001 Phys. Rev. E 64 056139
[15] Ma Y Q 2001 J. Chem. Phys. 114 3734
[16] Huang C, de la Cruz M O, Swift B W 1996 Macromolecules 28 7996
[17] Zhang L C, Sun M N, Pan J X, Wang B F, Zhang J J, Wu H S 2013 Chin. Phys. B 22 096401
[18] Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. B 22 026401
[19] Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. Lett. 30 046401
[20] Pinna M, Hiltl S, Guo X H, Böker A, Zvelindovsky A V 2010 ACS Nano 4 2845
[21] Chen H Y, Peng C J, Sun L, Liu H L, Hu Y 2007 Langmuir 23 11112
[22] Chen H Y, Chen X Q, Ye Z C, Liu H L, Hu Y 2010 Langmuir 26 6663
[23] Hao Q H, Miao B, Song Q G, Niu X H, Liu T J 2014 Polymer 55 4281
[24] Xu Y C, Li W H, Qiu F, Lin Z Q 2014 Nanoscale 6 6844
[25] Li M, Zhu Y J 2008 Acta Phys. Sin. 57 7555 (in Chinese) [李明, 诸跃进 2008 57 7555]
[26] Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝焕平, 章林溪 2012 61 058701]
[27] Zhang J J, Jin G J, Ma Y Q 2005 Phys. Rev. E 71 051803
[28] Pinna M, Zvelindovsky A V 2008 Soft Matter 4 316
[29] Xu T, Craig J H, Russell T P 2003 Macromolecules 36 6178
[30] Böker A, Schmidt K, Knoll A, Zettl H, Hansel H, Urban V, Abetz V, Krausch G 2006 Polymer 47 849
[31] Schmidt K, Böker A, Zettl H, Schubert F, Hänsel H, Fischer F, Weiss T M, Abetz V, Zvelindovsky A V, Sevink G J A, Krausch G 2005 Langmuir 21 11974
[32] Hong Y R, Admson D H, Chainkin P M, Register R A 2009 Soft Matter 5 1687
[33] Chen K, Ma Y Q 2002 J. Chem. Phys. 116 7783
[34] Morozov A N, Zvelindovsky A V, Fraaije J G E M 2001 Phys. Rev. E 64 051803
[35] Morozov A N, Fraaije J G E M 2002 Phys. Rev. E 65 031803
[36] You L Y, Chen L J, Qian H J, Lu Z Y 2007 Macromolecules 40 5222
[37] Pan Z Q, He L L, Zhang L X, Liang H J 2011 Polymer 52 2711
[38] Nikoubashman A, Davis R L, Michal B T, Chaikin P M, Register R A, Panagiotopoulos A Z 2014 ACS Nano 8 8015
[39] Nikoubashman A, Register R A, Panagiotopoulos A Z 2013 Soft Matter 9 9960
[40] Guo Y Q, Zhang J J, Wang B F, Wu H S, Sun M N, Pan J X 2015 Condens. Matter Phys. 18 23801
[41] Peng G W, Qiu F, Ginzburg V V, Jasnow D, Balazs A C 2000 Science 288 1802
[42] Deng Z Y, Zhang L X 2015 Acta Phys. Sin. 64 0168201 (in Chinese) [邓真渝, 章林溪 2015 64 0168201]
[43] Chen K, Ma Y Q 2002 Phys. Rev. E 65 041501
[44] Zhu Y J, Ma Y Q 2003 Chin. Phys. Lett. 20 703
[45] Zhang J J, Jin G J, Ma Y Q 2005 Eur. Phys. J. E 18 359
[46] Liu Y, Kuksenok O, Balazs A C 2013 Langmuir 29 750
[47] Dayal P, Kuksenok O, Balazs A C 2008 Langmuir 24 1621
[48] Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. Lett. 30 076401
[49] Grzybowski B A, Campbell C J 2007 Mater. Today 10 38
[50] Glotzer S C, Stauffer D, Jan N 1994 Phys. Rev. Lett. 72 4109
[51] Qiu T C, Kawai J J, Endoh K 1999 Chaos 9 298
[52] Colvin V L, Larson R G, Harris A L, Schilling M L 1997 J. Appl. Phys. 81 5913
[53] Kellogg G J, Walton D G, Mayes A M 1996 Phys. Rev. Lett. 76 2503
[54] Christensen J J, Elder K, Fogedby H C 1996 Phys. Rev. E 54 R2212
[55] Glotzer S C, Marzio E A Di, Muthukumar M 1995 Phys. Rev. Lett. 74 2034
[56] Purit S, Frisch H L 1994 J. Phys. A: Math. Gen. 27 6027
[57] Tran C Q, Kawai J J, Nishikawa Y, Jinnai H 1999 Phys. Rev. E 60 R1150
[58] Nishioka H, Kida K, Yano O, Tran C Q 2000 Macromolecules 33 4301
[59] Liu B, Tong C H, Yang Y L 2001 J. Phys. Chem.B 105 10091
[60] Tong C H, Yang Y L 2002 J. Chem. Phys. 116 1519
[61] Tong C H, Zhang H D, Yang Y L 2002 J. Phys. Chem. B 106 7869
[62] Zhu Y J, Ma Y Q 2003 Phys. Rev. E 67 021804
[63] Okuzono T, Ohta T 2003 Phys. Rev. E 67 056211
[64] Good K, Kuksenok O, Buxton G A, Ginzburg V V, Balazs A C 2004 J. Chem. Phys. 121 6052
[65] Nakanishi H, Satoh M, Norisuye T, Tran C Q 2004 Macromolecules 37 8495
[66] Oono Y, Puri S 1987 Phys. Rev. Lett. 58 836
[67] Puri S, Oono Y 1988 Phys. Rev. A 38 1542
[68] Oono Y, Puri S 1988 Phys. Rev. A 38 434
[69] Travasso R D M, Buxton G A, Kuksenok O, Good K, Balazs A C 2005 J. Chem. Phys. 122 194906 ten Brinke G, Ikkala O 1998 Science 280 557
Catalog
Metrics
- Abstract views: 5635
- PDF Downloads: 160
- Cited By: 0