Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phosphorescent hybrid organic-inorganic light emitting devices with solution-processed small molecule emissive layers

Fan Chang-Jun Wang Rui-Xue Liu Zhen Lei Yong Li Guo-Qing Xiong Zu-Hong Yang Xiao-Hui

Citation:

Phosphorescent hybrid organic-inorganic light emitting devices with solution-processed small molecule emissive layers

Fan Chang-Jun, Wang Rui-Xue, Liu Zhen, Lei Yong, Li Guo-Qing, Xiong Zu-Hong, Yang Xiao-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We report efficient phosphorescent hybrid organic-inorganic light emitting devices using poly(ethylenimine) as electron-injection layer and interfacial modifier for metal oxides and solution-processed small molecule emissive layers. As a first step, the hole transport layers with various HOMO levels and the hole mobility values including TAPC, TCTA and mCP are evaluated. The results indicate that devices using a TAPC layer show the best luminance and power efficiencies. Subsequently, the optimum phosphor concentration is determined to be ca. 5%. Enlarged efficiency roll-off with increasing current density is observed in devices using the phosphor concentration above the optimum value. We also investigate the morphologies of films having different phosphor concentrations on the top of bare or PEIE-covered glass substrates, which is closely related to device performance. All the films have the RMS values of ca. 1 nm, indicating high-quality solution processed small molecule films. The blue, yellow and red devices show the maximum external quantum efficiencies of 17.3%, 10.7% and 7.3%, respectively. These efficiencies are 17.0%, 10.6% and 5.8% at 1000 cd·m-2, only showing a small roll-off, which can be attributed to alleviated triplet-triplet and triplet-polaron interactions in a broad carrier recombination zone due to using the mixed hole-transport and electron-transport materials as the co-hosts. In addition, these devices exhibit the respective Commission International Eclairage (CIE) coordinates of (0.16, 0.36), (0.50, 0.49) and (0.66, 0.32), which almost traverse the whole visible light region. Furthermore, the hybrid two-colored white devices show a luminance efficiency of 31 cd·A-1, power efficiency of 14.8 lm·W-1 at 1000 cd·m-2 and the operating current-insensitive CIE coordinates of (0.32, 0.42). The efficiencies represent the significant improvement over the previously reported values, which can be attributed to high-quality small molecule films on PEIE, and in particular to the unique properties of small molecule host materials such as balanced carrier transport and high triplet energy. Further efforts including selection of high-mobility electron transport host material and phosphors with high luminescence quantum yield are made to increase the efficiency and reliability of hybrid organic-inorganic light emitting device.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177030, 11374242, 11474232), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0705), and the Fund for the Doctoral Program of Southwest University, China (Grant No. SWU111057).
    [1]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829

    [2]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys. Sin. 59 5480 (in Chinese) [黄金昭, 李世帅, 冯秀鹏 2010 59 5480]

    [3]

    Zhang K, Zhong C M, Liu S J, Liang A H, Dong S, Huang F 2014 J. Mater. Chem. C 2 3270

    [4]

    Brine H, Juan F, Bolink H J 2013 Org. Electron. 14 164

    [5]

    Bolink H J, Coronado E, Repetto D, Sessolo M, Barea E M, Bisquert J, Garcia-Belmonte G, Prochazka J, Kavan L 2008 Adv. Funct. Mater. 18 145

    [6]

    Chen J S, Shi C S, Fu Q, Zhao F C, Hu Y, Feng Y L, Ma D G 2012 J. Mater. Chem. 22 5164

    [7]

    Morii K, Ishida M, Takashima T 2006 Appl. Phys. Lett. 89 183510

    [8]

    Lu L P, Kabra D, Friend R H 2012 Adv. Funct. Mater. 22 4165

    [9]

    Bolink H J, Coronado E, Orozco J, Sessolo M 2009 Adv. Mater. 21 79

    [10]

    Bolink H J, Brine H, Coronado E 2010 Adv. Mater. 22 2198

    [11]

    Lu L P, Kabra D, Johnson K, Friend R H 2012 Adv. Funct. Mater. 22 144

    [12]

    Bolink H J, Brine H, Coronado E 2010 ACS Appl. Mater. Interfaces 2 2694

    [13]

    Bolink H J, Coronado E, Sessolo M 2009 Chem. Mater. 21 439

    [14]

    Yook K S, Lee J Y 2014 Adv. Mater. 26 4218

    [15]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327

    [16]

    Yang X H, Wang R X, Fan C J, Li G Q, Xiong Z H, Jabbour G E 2014 Org. Electron. 15 2387

    [17]

    Kim Y H, Han T H, Cho H, Min S Y, Lee C L, Lee T W 2014 Adv. Funct. Mater. 24 3808

    [18]

    Liu J, Shi X D, Wu X K 2014 Org. Electron. 15 2492

    [19]

    Fu Q, Chen J S, Shi C S, Ma D G 2012 ACS Appl. Mater. Interfaces 4 6579

    [20]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [21]

    Tsuboi T, Liu S W, Wu M F, Chen C T 2009 Org. Electron. 10 1372

    [22]

    Chang Y T, Chang J K, Lee Y T, Wang P S, Wu J L, Hsu C C, Wu I W, Tseng W H, Pi T W, Chen C T, Wu C I 2013 ACS Appl. Mater. Interfaces. 5 10614

    [23]

    Lu M T, Bruyn P D, Nicolai H T, Wetzelaer G J A H, Blom P W M 2012 Org. Electron 13 1693

    [24]

    Lamansky S, Djurovich P, Murphy D 2001 J. Am. Chem. Soc. 123 4304

    [25]

    Walikewitz B H, Kabra D, Gélinas S, Friend R H 2012 Phys. Rev. B 85 045209

    [26]

    Baldo M A, Adachi C, Forrest S R 2001 Phys. Rev. B 62 10967

    [27]

    Reineke S, Walzer K, Leo K 2007 Phys. Rev. B 75 125328

    [28]

    Duan L, Hou L D, Lee T W, Qiao J A, Zhang D Q, Dong G F, Wang L D, Qiu Y 2010 J. Mater. Chem. 20 6392

  • [1]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829

    [2]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys. Sin. 59 5480 (in Chinese) [黄金昭, 李世帅, 冯秀鹏 2010 59 5480]

    [3]

    Zhang K, Zhong C M, Liu S J, Liang A H, Dong S, Huang F 2014 J. Mater. Chem. C 2 3270

    [4]

    Brine H, Juan F, Bolink H J 2013 Org. Electron. 14 164

    [5]

    Bolink H J, Coronado E, Repetto D, Sessolo M, Barea E M, Bisquert J, Garcia-Belmonte G, Prochazka J, Kavan L 2008 Adv. Funct. Mater. 18 145

    [6]

    Chen J S, Shi C S, Fu Q, Zhao F C, Hu Y, Feng Y L, Ma D G 2012 J. Mater. Chem. 22 5164

    [7]

    Morii K, Ishida M, Takashima T 2006 Appl. Phys. Lett. 89 183510

    [8]

    Lu L P, Kabra D, Friend R H 2012 Adv. Funct. Mater. 22 4165

    [9]

    Bolink H J, Coronado E, Orozco J, Sessolo M 2009 Adv. Mater. 21 79

    [10]

    Bolink H J, Brine H, Coronado E 2010 Adv. Mater. 22 2198

    [11]

    Lu L P, Kabra D, Johnson K, Friend R H 2012 Adv. Funct. Mater. 22 144

    [12]

    Bolink H J, Brine H, Coronado E 2010 ACS Appl. Mater. Interfaces 2 2694

    [13]

    Bolink H J, Coronado E, Sessolo M 2009 Chem. Mater. 21 439

    [14]

    Yook K S, Lee J Y 2014 Adv. Mater. 26 4218

    [15]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327

    [16]

    Yang X H, Wang R X, Fan C J, Li G Q, Xiong Z H, Jabbour G E 2014 Org. Electron. 15 2387

    [17]

    Kim Y H, Han T H, Cho H, Min S Y, Lee C L, Lee T W 2014 Adv. Funct. Mater. 24 3808

    [18]

    Liu J, Shi X D, Wu X K 2014 Org. Electron. 15 2492

    [19]

    Fu Q, Chen J S, Shi C S, Ma D G 2012 ACS Appl. Mater. Interfaces 4 6579

    [20]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [21]

    Tsuboi T, Liu S W, Wu M F, Chen C T 2009 Org. Electron. 10 1372

    [22]

    Chang Y T, Chang J K, Lee Y T, Wang P S, Wu J L, Hsu C C, Wu I W, Tseng W H, Pi T W, Chen C T, Wu C I 2013 ACS Appl. Mater. Interfaces. 5 10614

    [23]

    Lu M T, Bruyn P D, Nicolai H T, Wetzelaer G J A H, Blom P W M 2012 Org. Electron 13 1693

    [24]

    Lamansky S, Djurovich P, Murphy D 2001 J. Am. Chem. Soc. 123 4304

    [25]

    Walikewitz B H, Kabra D, Gélinas S, Friend R H 2012 Phys. Rev. B 85 045209

    [26]

    Baldo M A, Adachi C, Forrest S R 2001 Phys. Rev. B 62 10967

    [27]

    Reineke S, Walzer K, Leo K 2007 Phys. Rev. B 75 125328

    [28]

    Duan L, Hou L D, Lee T W, Qiao J A, Zhang D Q, Dong G F, Wang L D, Qiu Y 2010 J. Mater. Chem. 20 6392

  • [1] Xiao Xin-Ming, Zhu Long-Shan, Guan Yu, Hua Jie, Wang Hong-Mei, Dong He, Wang Jin. Highly efficient all-phosphorescent white organic light-emitting diodes with low efficiency roll-off and stable-color by managing triplet excitons in emissive layer. Acta Physica Sinica, 2020, 69(4): 047202. doi: 10.7498/aps.69.20191594
    [2] Wu Qing-Yang, Xie Guo-Hua, Zhang Zhen-Song, Yue Shou-Zhen, Wang Peng, Chen Yu, Guo Run-Da, Zhao Yi, Liu Shi-Yong. Highly efficient all fluorescent white organic light-emitting devices made by sequential doping. Acta Physica Sinica, 2013, 62(19): 197204. doi: 10.7498/aps.62.197204
    [3] Wu Xiao-Ming, Shen Li-Ying, Hua Yu-Lin, Dong Mu-Sen, Mu Xue, Bai Juan-Juan, Bi Wen-Tao, Yang Xiao-Yan, Yin Shou-Gen. Highly color-stability flexible white organic light-emitting devices fabricated by color conversion method. Acta Physica Sinica, 2012, 61(17): 178502. doi: 10.7498/aps.61.178502
    [4] Zhang Yong, Liu Ya-Li, Jiao Wei, Chen Lin, Xiong Zu-Hong. Magnetoconductance effect in organic light-emitting devices. Acta Physica Sinica, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [5] Chen Su-Jie, Yu Jun-Sheng, Wen Wen, Jiang Ya-Dong. Influence of NPB:CBP modulated hole transporting layer on yellow organic light-emitting device characteristics. Acta Physica Sinica, 2011, 60(3): 037202. doi: 10.7498/aps.60.037202
    [6] Wang Xu-Peng, Mi Bao-Xiu, Gao Zhi-Qiang, Guo Qing, Huang Wei. Progress of white organic light-emitting device. Acta Physica Sinica, 2011, 60(8): 087808. doi: 10.7498/aps.60.087808
    [7] Wang Jin, Jiang Wen-Long, Hua Jie, Wang Guang-De, Han Qiang, Chang Xi, Zhang Gang. Influence of magnetic field on efficiency and current in Co-based organic light emitting diode. Acta Physica Sinica, 2010, 59(11): 8212-8217. doi: 10.7498/aps.59.8212
    [8] Wen Wen, Wang Bo, Li Lu, Yu Jun-Sheng, Jiang Ya-Dong. High performance white organic light-emitting devices based on a novel red fluorescent dye 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene. Acta Physica Sinica, 2009, 58(11): 8014-8020. doi: 10.7498/aps.58.8014
    [9] Wu Xiao-Ming, Hua Yu-Lin, Yin Shou-Gen, Zhang Guo-Hui, Hui Juan-Li, Zhang Li-Juan, Wang Yu. Properties of white organic electroluminescent device with double light-emitting layers based upon different hosts. Acta Physica Sinica, 2008, 57(2): 1150-1154. doi: 10.7498/aps.57.1150
    [10] Zhang Li-Juan, Hua Yu-Lin, Wu Xiao-Ming, Zhang Guo-Hui, Wang Yu, Yin Shou-Gen. A novel white organic electroluminescent device with both phosphorescent and fluorescent dopants. Acta Physica Sinica, 2008, 57(3): 1913-1917. doi: 10.7498/aps.57.1913
    [11] Cao Jin, Jiang Xue-Yin, Zhang Zhi-Lin. Research of tricolor microcavity top-emitting organic light-emitting devices with white emitting layer. Acta Physica Sinica, 2007, 56(6): 3493-3498. doi: 10.7498/aps.56.3493
    [12] Cao Jin, Liu Xiang, Zhang Xiao-Bo, Wei Fu-Xiang, Zhu Wen-Qing, Jiang Xue-Yin, Zhang Zhi-Lin, Xu Shao-Hong. Top-emitting organic light-emitting devices with cavity effect. Acta Physica Sinica, 2007, 56(2): 1088-1092. doi: 10.7498/aps.56.1088
    [13] Effects of emitting and hole transporting layers on the performance of white organic light-emitting divice. Acta Physica Sinica, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [14] Zhang Guo-Hui, Hua Yu-Lin, Wu Xiao-Ming, Yin Shou-Gen, Niu Xia, Hui Juan-Li, Wang Yu, Zhang Li-Juan. Fabrication of a new organic multilayer phosphorescent white-light-emitting device and evaluation of its characteristics. Acta Physica Sinica, 2007, 56(9): 5408-5412. doi: 10.7498/aps.56.5408
    [15] Zhang Guo-Hui, Hua Yu-Lin, Wu Kong-Wu, Wu Xiao-Ming, Yin Shou-Gen, Hui Juan-Li, An Hai-Ping, Zhu Fei-Jian, Niu Xia. Using BCP layer to control the chroma of white phosphorescent organic light-emitting device. Acta Physica Sinica, 2007, 56(6): 3559-3563. doi: 10.7498/aps.56.3559
    [16] Wei Fu-Xiang, Cao Jin, Zhang Xiao-Bo, Liu Xiang, Jiang Xue-Yin, Zhang Zhi-Lin, Zhu Wen-Qing, Xu Shao-Hong. Blue and white organic light emitting diodes based on a new stilbene derivative dopant. Acta Physica Sinica, 2006, 55(4): 2008-2013. doi: 10.7498/aps.55.2008
    [17] Zhang Xiao-Bo, Cao Jin, Wei Fu-Xiang, Jiang Xue-Yin, Zhang Zhi-Lin, Zhu Wen-Qing, Xu Shao-Hong. High efficiency organic red electrophosphorescence devices with changing thickness of the emitting layer. Acta Physica Sinica, 2006, 55(1): 119-124. doi: 10.7498/aps.55.119
    [18] Jiang Yan, Yang Sheng-Yi, Zhang Xiu-Long, Teng Feng, Xu Zheng, Hou Yan-Bing. ZnSe-based organic-inorganic heterostructure diodes. Acta Physica Sinica, 2006, 55(9): 4860-4864. doi: 10.7498/aps.55.4860
    [19] . Acta Physica Sinica, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [20] YANG SHENG-YI, WANG ZHEN-JIA, CHEN XIAO-HONG, HOU YAN-BING, DONG JIN-FENG, XU XU-RONG. INFLUENCE OF INTERFACE BARRIERS ON CARRIERS RECOMBINATION IN ORGANIC BILAYER DEVICES AT HIGH ELECTRIC FIELD. Acta Physica Sinica, 2000, 49(8): 1627-1631. doi: 10.7498/aps.49.1627
Metrics
  • Abstract views:  5610
  • PDF Downloads:  213
  • Cited By: 0
Publishing process
  • Received Date:  10 February 2015
  • Accepted Date:  06 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map