Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method

Sun Tao Yuan Jian-Mei

Citation:

Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method

Sun Tao, Yuan Jian-Mei
PDF
HTML
Get Citation
  • With the development of artificial intelligence, machine learning (ML) is more and more widely used in material computing. To apply ML to the prediction of material properties, the first thing to do is to obtain effective material feature representation. In this paper, an atomic feature representation method is used to study a low-dimensional, densely distributed atomic eigenvector, which is applied to the band gap prediction in material design. According to the types and numbers of atoms in the chemical formula of material, the Transformer Encoder is used as a model structure, and a large number of material chemical formula data are trained to extract the features of the training elements. Through the clustering analysis of the atomic feature vectors of the main group elements, it is found that the element features can be used to distinguish the element categories. The Principal Component Analysis of the atomic eigenvector of the main group element shows that the projection of the atomic eigenvector on the first principal component reflects the outermost electron number corresponding to the element. It illustrates the effectiveness of atomic eigenvector extracted by using the transformer model. Subsequently, the atomic feature representation method is used to represent the material characteristics. Three ML methods named Random Forest (RF), Kernel Ridge Regression (KRR) and Support Vector Regression (SVR) are used to predict the band gap of the two-dimensional transition metal chalcogenide compound MXY (M represents transition metal, X and Y refer to the different chalcogenide elements) with Janus structure. The hyperparameters of ML model are determined by searching for parameters. To obtain stable results, the ML model is tested by 5-fold cross-validation. The results obtained from the three ML models show that the average absolute error of the prediction using atomic feature vectors based on deep learning is smaller than that obtained from the traditional Magpie method and the Atom2Vec method. For the atomic eigenvector method proposed in this paper, the prediction accuracy of the KRR model is better than that of the results obtained from the Magpie method and Atom2Vec method. It shows that the atomic feature vector proposed in this paper has a certain correlation between the features, and is a low-dimensional and densely distributed feature vector. Visual analysis and numerical experiments of material property prediction show that the atomic feature representation method based on deep learning extraction proposed in this paper can effectively characterize the material features and can be applied to the tasks of material band gap prediction.
      Corresponding author: Yuan Jian-Mei, yuanjm@xtu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30650), the Innovation Project of Degree and Postgraduate of Hunan Province, China (Grant Nos. 2020JGYB097, 2020JGYB098), and the Research Innovation Project of Postgraduate Student in Hunan Province, China (Grant No. QL20210142).
    [1]

    He K M, Zhang X Y, Ren S Q, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA, June 27–30, 2016 p770

    [2]

    Ren S Q, He K M, Girshick R, Sun J 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 1137Google Scholar

    [3]

    Devlin J, Chang M W, Lee K, Toutanova K 2019 Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies Minneapolis, USA, June 3–5, 2019 p4171

    [4]

    郭佳龙, 王宗国, 王彦棡, 赵旭山, 宿彦京, 刘志威 2021 数据与计算发展前沿 3 120Google Scholar

    Guo J L, Wang Z G, Wang Y G, Zhao X S, Su Y J, Liu Z W 2021 Frontiers of Data and Computing 3 120Google Scholar

    [5]

    牛程程, 李少波, 胡建军, 但雅波, 曹卓, 李想 2020 材料导报 34 23100Google Scholar

    Niu C C, Li S B, Hu J J, Dan Y B, Cao Z, Li X 2020 Mater. Rep. 34 23100Google Scholar

    [6]

    Hu T T, Song H, Jiang T, Li S B 2020 Symmetry 12 1889Google Scholar

    [7]

    Chen C, Ye W K, Zuo Y X, Zheng C, Ong S P 2019 Chem. Mater. 31 3564Google Scholar

    [8]

    Li S B, Dan Y B, Li X, Hu T T, Dong R Z, Cao Z, Hu J J 2020 Symmetry 12 262Google Scholar

    [9]

    Zhang L F, Han J Q, Wang H, Car R, E W N 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [10]

    de Jong M, Chen W, Notestine R, Persson K, Ceder G, Jain A, Asta M, Gamst A 2016 Sci. Rep. 6 34256Google Scholar

    [11]

    Zhou Q, Tang P Z, Liu S X, Pan J B, Yan Q M, Zhang S C 2018 Proc. Nat1. Acad. Sci. U. S. A. 115 6411Google Scholar

    [12]

    Calfa B A, Kitchin J R 2016 AIChE J. 62 2605Google Scholar

    [13]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 NPJ Comput. Mater. 2 16028Google Scholar

    [14]

    Zhuo Y, Mansouri Tehrani A, Brgoch J 2018 J. Phys. Chem. Lett. 9 1668Google Scholar

    [15]

    Hu M X, Yuan J M, Sun T, Huang M, Liang Q Y 2021 Comput. Mater. Sci. 200 110841Google Scholar

    [16]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I 2017 31st Conference on Neural Information Processing Systems (NIPS 2017) Long Beach, CA, USA, December 4–9, 2017 p6000

    [17]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [18]

    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z M, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J J, Chintala S 2019 Proceedings of the 33rd International Conference on Neural Information Processing Systems Vancouver, Canada, December 8–14, 2019 p8026

    [19]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [20]

    Riis-Jensen A C, Deilmann T, Olsen T, Thygesen K S 2019 ACS Nano 13 13354Google Scholar

    [21]

    Gjerding M N, Taghizadeh A, Rasmussen A, Ali S, Bertoldo F, Deilmann T, Knøsgaard N R, Kruse M, Larsen A H, Manti S, Pedersen T G, Petralanda U, Skovhus T, Svendsen M K, Mortensen J J, Olsen T, Thygesen K S 2021 2D Mater. 8 044002Google Scholar

    [22]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002Google Scholar

    [23]

    Schütt K T, Glawe H, Brockherde F, Sanna A, Müller K R, Gross E K U 2014 Phys. Rev. B 89 205118Google Scholar

    [24]

    Wu Y R, Li H P, Gan X S 2013 Adv. Mater. Res. 848 122Google Scholar

    [25]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É 2011 J. Mach. Learn. Res. 12 2825Google Scholar

  • 图 1  Transformer编码器结构

    Figure 1.  The Transformer encoder structure.

    图 2  多头注意机构模块结构[16]

    Figure 2.  Multi-attention mechanism module structure[16].

    图 3  模型训练示意图

    Figure 3.  Model training diagram.

    图 4  主族元素层次聚类图

    Figure 4.  A hierarchical clustering diagram of the main family elements.

    图 5  PCA1和PCA2散点图

    Figure 5.  PCA1 and PCA2 scatter maps.

    图 6  PCA3和PCA4散点图

    Figure 6.  PCA3 and PCA4 scatter maps.

    图 7  对MXY Janus 单分子层材料的带隙预测平均绝对误差

    Figure 7.  MAE of band gap prediction for MXY Janus monolayer materials.

    表 1  随机森林模型参数

    Table 1.  The random forest model parameter.

    机器学习方法原子表征方法随机森林中树的个数
    随机森林Magpie50
    Atom2Vec80
    Atom_DL10
    DownLoad: CSV

    表 2  核岭回归模型参数

    Table 2.  Kernel ridge regression model parameter.

    机器学习方法原子表征方法核函数多项式核次数正则化强度伽马参数零系数
    核岭回归Magpie多项式核110.0101.0
    Atom2Vec多项式核210.0010.5
    Atom_DL多项式核410.3001.5
    DownLoad: CSV

    表 3  支持向量机回归模型参数

    Table 3.  Support vector regression model parameter.

    机器学习方法原子表征方法核函数多项式核次数正则化参数伽马参数零系数
    支持向量机Magpie多项式核10.10.010.5
    Atom2Vec多项式核21.00.012.0
    Atom_DL多项式核31.00.152.5
    DownLoad: CSV

    表 4  测试集材料预测值和计算值对比

    Table 4.  Comparison of material predictive and experimental values in the test.

    材料
    化合物
    带隙
    计算值
    随机森林核岭回归支持向量机
    MagpieAtom2VecAtom_DLMagpieAtom2VecAtom
    _DL
    MagpieAtom2VecAtom
    _DL
    ClSbTe1.2551.1981.1081.2361.1761.2801.1571.2531.3361.296
    ISSb1.2190.8850.9881.0610.8491.1111.1141.0680.7651.219
    ZrBrI0.7740.7060.6650.7020.4840.7000.9520.5660.8560.975
    ClSbSe1.1721.3211.2831.3431.4461.4611.2821.2941.4431.397
    ZrSSe0.8290.5690.5950.6800.5960.6030.8850.5780.6410.861
    MoSSe1.4530.9470.7830.9321.0890.9971.3941.1671.3571.220
    CrSeTe0.5720.2580.2470.2050.3820.2400.3380.3490.4090.395
    TiClI0.7450.6010.5240.6020.4080.7490.7170.5540.7920.636
    VClI1.1000.7690.7260.6230.5010.7141.3070.7210.9900.750
    VBrCl1.2891.0811.0051.0950.6330.9181.0520.9151.3831.159
    ZrBrCl0.9120.9710.8960.9200.7640.9551.0480.9201.2171.074
    BiIS0.4010.6980.6920.7000.5410.7230.5090.6590.8690.838
    WSTe1.1410.6460.6350.6340.6950.5311.0060.9400.6810.875
    BiClSe1.2350.9520.9981.1271.0220.9931.2040.9850.9851.085
    TiBrCl0.8301.1060.8600.7760.5360.9180.8630.7511.1250.887
    ZrClI0.8770.6330.6380.6330.6100.7940.9820.7000.9940.772
    AsClSe1.7171.4941.5491.5121.5591.4331.4901.4751.5791.498
    AsBrS1.4171.4471.4171.4681.3421.1841.2111.4651.4291.444
    ZrSTe0.2080.2370.2180.2450.2380.1450.1980.2490.0760.237
    ISSb0.7940.7410.8170.9190.8511.1130.9711.0700.9441.297
    BrSbTe1.3190.8781.0290.9831.1101.0151.2561.1441.2081.041
    BiBrS1.1880.9291.0671.1141.0160.8581.0410.9491.1841.079
    ZrSSe0.6130.5810.7060.7660.5950.6030.5380.5770.4480.651
    BiITe0.3460.5300.5080.4810.4640.5180.0330.4200.3760.173
    ClSbTe1.2551.1981.1081.2361.1761.2801.1571.2531.3361.296
    DownLoad: CSV
    Baidu
  • [1]

    He K M, Zhang X Y, Ren S Q, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA, June 27–30, 2016 p770

    [2]

    Ren S Q, He K M, Girshick R, Sun J 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 1137Google Scholar

    [3]

    Devlin J, Chang M W, Lee K, Toutanova K 2019 Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies Minneapolis, USA, June 3–5, 2019 p4171

    [4]

    郭佳龙, 王宗国, 王彦棡, 赵旭山, 宿彦京, 刘志威 2021 数据与计算发展前沿 3 120Google Scholar

    Guo J L, Wang Z G, Wang Y G, Zhao X S, Su Y J, Liu Z W 2021 Frontiers of Data and Computing 3 120Google Scholar

    [5]

    牛程程, 李少波, 胡建军, 但雅波, 曹卓, 李想 2020 材料导报 34 23100Google Scholar

    Niu C C, Li S B, Hu J J, Dan Y B, Cao Z, Li X 2020 Mater. Rep. 34 23100Google Scholar

    [6]

    Hu T T, Song H, Jiang T, Li S B 2020 Symmetry 12 1889Google Scholar

    [7]

    Chen C, Ye W K, Zuo Y X, Zheng C, Ong S P 2019 Chem. Mater. 31 3564Google Scholar

    [8]

    Li S B, Dan Y B, Li X, Hu T T, Dong R Z, Cao Z, Hu J J 2020 Symmetry 12 262Google Scholar

    [9]

    Zhang L F, Han J Q, Wang H, Car R, E W N 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [10]

    de Jong M, Chen W, Notestine R, Persson K, Ceder G, Jain A, Asta M, Gamst A 2016 Sci. Rep. 6 34256Google Scholar

    [11]

    Zhou Q, Tang P Z, Liu S X, Pan J B, Yan Q M, Zhang S C 2018 Proc. Nat1. Acad. Sci. U. S. A. 115 6411Google Scholar

    [12]

    Calfa B A, Kitchin J R 2016 AIChE J. 62 2605Google Scholar

    [13]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 NPJ Comput. Mater. 2 16028Google Scholar

    [14]

    Zhuo Y, Mansouri Tehrani A, Brgoch J 2018 J. Phys. Chem. Lett. 9 1668Google Scholar

    [15]

    Hu M X, Yuan J M, Sun T, Huang M, Liang Q Y 2021 Comput. Mater. Sci. 200 110841Google Scholar

    [16]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I 2017 31st Conference on Neural Information Processing Systems (NIPS 2017) Long Beach, CA, USA, December 4–9, 2017 p6000

    [17]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [18]

    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z M, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J J, Chintala S 2019 Proceedings of the 33rd International Conference on Neural Information Processing Systems Vancouver, Canada, December 8–14, 2019 p8026

    [19]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [20]

    Riis-Jensen A C, Deilmann T, Olsen T, Thygesen K S 2019 ACS Nano 13 13354Google Scholar

    [21]

    Gjerding M N, Taghizadeh A, Rasmussen A, Ali S, Bertoldo F, Deilmann T, Knøsgaard N R, Kruse M, Larsen A H, Manti S, Pedersen T G, Petralanda U, Skovhus T, Svendsen M K, Mortensen J J, Olsen T, Thygesen K S 2021 2D Mater. 8 044002Google Scholar

    [22]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002Google Scholar

    [23]

    Schütt K T, Glawe H, Brockherde F, Sanna A, Müller K R, Gross E K U 2014 Phys. Rev. B 89 205118Google Scholar

    [24]

    Wu Y R, Li H P, Gan X S 2013 Adv. Mater. Res. 848 122Google Scholar

    [25]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É 2011 J. Mach. Learn. Res. 12 2825Google Scholar

  • [1] Wei Wei, Guan Feng, Fang Xin. Integrated vibration absorption and isolation design method for metamaterial beams based on bandgap wave-insulating vibration isolatior. Acta Physica Sinica, 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [2] Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing. Automatic fabrication system of optical micro-nanofiber based on deep learning. Acta Physica Sinica, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [3] Ou Xiu-Juan, Xiao Yi. Deep learning methods of predicting RNA torsion angle. Acta Physica Sinica, 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [4] Tao Guang-Yi, Qi Peng-Fei, Dai Yu-Chen, Shi Bei-Bei, Huang Yi-Jing, Zhang Tian-Hao, Fang Zhe-Yu. Enhancement of photoluminescence of monolayer transition metal dichalcogenide by subwavelength TiO2 grating. Acta Physica Sinica, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [5] Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin. Flow feature extraction models based on deep learning. Acta Physica Sinica, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [6] Zhao Zhi-Peng, Zhou Shuang, Wang Xing-Yuan. A new chaotic signal based on deep learning and its application in image encryption. Acta Physica Sinica, 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [7] Nan Hu, Ma Xiao-Jing, Zhao Hai-Bo, Tang Shao-Jie, Liu Wei-Hua, Wang Da-Wei, Jia Chun-Lin. Detection of intensity peaks in high-resolution transmission electron microscopy image based on YOLOv3. Acta Physica Sinica, 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [8] Xu Zhao, Zhou Xin, Bai Xing, Li Cong, Chen Jie, Ni Yang. Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning. Acta Physica Sinica, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [9] Zhang Yao, Zhang Yun-Bo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [10] Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue. In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [11] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [12] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [13] Du Chun-Yang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong. Flexural vibration band gaps for a phononic crystal beam with X-shaped local resonance metadamping structure. Acta Physica Sinica, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [14] Cheng Cheng, Wang Guo-Dong, Cheng Xiao-Yu. Effects of surface polarization on the bandgap and the absorption-peak wavelength of quantum dot at room temperature. Acta Physica Sinica, 2017, 66(13): 137802. doi: 10.7498/aps.66.137802
    [15] Liu Yan-Ling, Liu Wen-Jing, Bao Jia-Mei, Cao Yong-Jun. Band-gap structures of two-dimensional magnonic crystals with complex lattices. Acta Physica Sinica, 2016, 65(15): 157501. doi: 10.7498/aps.65.157501
    [16] Hu Jia-Guang, Xu Wen, Xiao Yi-Ming, Zhang Ya-Ya. The two-dimensional phononic crystal band gaps tuned by the symmetry and orientation of the additional rods in the center of unit cell. Acta Physica Sinica, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [17] Wen Qi-Hua, Zuo Shu-Guang, Wei Huan. Locally resonant elastic wave band gaps in flexural vibration of multi-oscillators beam. Acta Physica Sinica, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [18] Xu Zhen-Long, Wu Fu-Gen. Photonic band gaps of two-dimensional phononic crystals tuned and optimized by modifying the configuration. Acta Physica Sinica, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [19] Yao Wen-Jie, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Effect of wire width on strain distribution and bandgap in quantum-wire nanostructures based on continuum elasticity theory. Acta Physica Sinica, 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [20] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
Metrics
  • Abstract views:  4949
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  11 July 2022
  • Accepted Date:  09 October 2022
  • Available Online:  01 November 2022
  • Published Online:  20 January 2023

/

返回文章
返回
Baidu
map