搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现

文凯 王良伟 周方 陈良超 王鹏军 孟增明 张靖

引用本文:
Citation:

超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现

文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖

Experimental realization of Mott insulator of ultracold 87Rb atoms in two-dimensional optical lattice

Wen Kai, Wang Liang-Wei, Zhou Fang, Chen Liang-Chao, Wang Peng-Jun, Meng Zeng-Ming, Zhang Jing
PDF
HTML
导出引用
  • 超冷原子气体的量子相变是研究量子关联多体物理的核心内容之一. 本文采用单一激光光束通过折叠反射产生二维光晶格, 通过控制激光偏振产生两种不同的二维光晶格结构, 一种是两个独立的一维光晶格构成, 另一种是两个方向的一维光晶格互相干涉形成. 将超冷87Rb原子装载到二维光晶格中, 通过改变光晶格激光功率调控原子在光晶格中的隧穿强度和相互作用强度, 观察到87Rb原子从超流态到Mott绝缘态之间的量子相变, 并且分析了两种光晶格对量子相变的影响, 为今后开展光晶格中强关联物理研究奠定基础.
    Quantum phase transition of ultracold atomic gas is one of the core contents in the study of quantum correlational many-body systems. In this paper, two-dimensional (2D) optical lattices are generated by a single fold retroreflected laser beam, and this scheme is used to experimentally design and implement the 2D optical lattice of double wells suitable for isolating and manipulating an array of individual pairs of atoms and predict a topological semimetal in the high orbital bands in this 2D lattice. Two types of optical lattice structures are produced by controlling the laser polarization. One type is the usual 2D optical lattice, which is formed by two independent one-dimensional(1D) optical lattices in two directions and named in-plane lattice, and the other type is the lattice that is formed by the interference between two one-dimensional optical lattices in two directions and called out-plane lattice. When 87Rb BEC (Bose-Einstein condensation) is loaded into the 2D optical lattice, the quantum phase transition between superfluid state and Mott insulator state is observed by controlling the tunneling and in-site interaction. And the phase transition from superfluid state to Mott insulator is judged by observing whether there are interferential lattice points in momentum space. The lattice depths of two cases can be calibrated by Kapitza-Dirac scattering in the ultracold atomic experiment through the time-of-flight absorption imaging. In the in-plane optical lattice, some incorrect points appear in the 45° direction, because the linear polarization degree of beam is impure after being reflected by mirrors and two direction of beam are not completely orthogonal to each other. It is obvious that the two cases have different phase transition points, which is due mainly to the difference in structure. For the in-plane lattice, there are two independent 1D optical lattices, and for the out-plane lattice, the two direction beams mutually interfere with each other, therefore, two optical lattices are not independent of each other. The atoms come back to BEC by reducing the potentials of optical lattice to zero; the temperature of system is slightly higher, because of the jitter of the light lattice. The different behaviors of quantum phase transition are analyzed for two types of optical lattices. This work will provide a platform for the future study of large spin system and strong correlation physics in optical lattices.
      通信作者: 孟增明, zmmeng01@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301602, 2018YFA0307600)和国家自然科学基金(批准号: 11804203, 11904217)资助的课题
      Corresponding author: Meng Zeng-Ming, zmmeng01@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0301602, 2018YFA0307600) and the National Natural Science Foundation of China (Grant Nos. 11804203, 11904217)
    [1]

    文小刚(胡滨译) 2003 量子多体理论(北京: 高等教育出版社) 第1页

    Wen Xiaogang (translated by Hu Bin) 2003 The theory of Quantum Many-body Systems (Beijing: High Education Press) p1 (in Chinese)

    [2]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [3]

    Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S, Greiner M 2015 Phys. Rev. Lett. 114 213002Google Scholar

    [4]

    Bloch I, Greiner M 2005 Adv. Atom. Mol. Opt. Phys. 52 1Google Scholar

    [5]

    Vuletić, V, Ch an, H W, Black A T 2001 Phys. Rev. A 64 033405Google Scholar

    [6]

    Wang Y, Zhang X, Corcovilos T A, Kumar A, Weiss D S 2015 Phys. Rev. Lett. 115 043003Google Scholar

    [7]

    Kumar A, Wu T Y, Giraldo F, Weiss D S 2018 Nature 561 83Google Scholar

    [8]

    Kim M E, Chang T H, Fields B M, Chen C A, Hung C L 2019 Nat. commun. 10 1Google Scholar

    [9]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [10]

    Bernier J S, Sengupta K, Kim Y B 2007 Phys. Rev. B 76 014502Google Scholar

    [11]

    Kimura T, Tsuchiya S, Kurihara S 2005 Phys. Rev. Lett. 94 110403Google Scholar

    [12]

    Garcia-Ripoll J J, Martin-Delgado M A, Cirac J I 2004 Phys. Rev. Lett. 93 250405Google Scholar

    [13]

    Tu H-H, Zhang G-M, Yu L 2007 Phys. Rev. B 76 014438Google Scholar

    [14]

    Tu H-H, Zhang G-M, Yu L 2006 Phys. Rev. B 74 174404Google Scholar

    [15]

    Wu C, Zhang S-C 2005 Phys. Rev. B 71 155115Google Scholar

    [16]

    Wu C, Hu J P, Zhang S C 2003 Phys. Rev. Lett. 91 186402Google Scholar

    [17]

    Sebby-Strabley J, Anderlini M, Jessen P S, Porto J V 2006 Phys. Rev. A 73 033605Google Scholar

    [18]

    Sun K, Liu W V, Hemmerich A, Sarma S D 2012 Nat. Phys. 8 67Google Scholar

    [19]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 . Phys. Rev. Lett. 81 3108Google Scholar

    [20]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [21]

    Capogrosso-Sansone B, Söyler Ş G, Prokof’ev N, Svistunov B 2008 Phys. Rev. A 77 015602Google Scholar

    [22]

    Wen K, Meng Z M, Wang P J, Wang L W, Chen L C, Huang L H, Zhou L H, Cui X L, Zhang J 2020 Sci. Rep 10 5870Google Scholar

    [23]

    Xiong D Z, Wang P J, Chen H X, Zhang J 2010 Chin. Opt. Lett. 8 351Google Scholar

    [24]

    Chen H X, Xiong D Z, Wang P J, Zhang J 2010 Chin. Opt. Lett. 8 348Google Scholar

    [25]

    陈良超, 孟增明, 王鹏军 2017 66 083701Google Scholar

    Chen L C, Meng Z M, Wang P J 2017 Acta Phys. Sin. 66 083701Google Scholar

    [26]

    柴世杰, 王鹏军, 付正坤, 黄良辉, 张靖 2012 量子光学学报 18 171Google Scholar

    Chai S J, Wang P J, Fu Z K, Huang L H, Zhang J 2012 Acta Sin. Quantum Opt. 18 171Google Scholar

    [27]

    王鹏军, 熊德智, 陈海霞, 张靖 2010 光学学报 30 893Google Scholar

    Wang P J, Xiong D Z, Chen H X, Zhang J 2010 Acta Opt. Sin. 30 893Google Scholar

    [28]

    Spielman I B, Phillips W D, Porto J V 2007 Phys. Rev. Lett. 98 080404Google Scholar

  • 图 1  超冷原子在光晶格中的隧穿

    Fig. 1.  The tunneling of ultracold atoms in optical lattice.

    图 2  实验装置二维光晶格由一束激光往返产生, 其中方案1和方案2分别代表激光偏振平行和垂直于光束所在平面的两种情况

    Fig. 2.  Schematic diagram of the experimental setup to realize the two-dimensional optical lattices. The two-dimensional optical lattices are made of a single fold retroreflected laser beam. The linearly polarization of the incident laser beam aligned parallel (case 1) or normal (case 2) to the drawing plane can generate two different cases of two-dimensional optical lattice potentials.

    图 3  两种光晶格 (a)方案1的面内光晶格空间分布; (b)方案2的面外光晶格空间分布; (c)方案1的晶胞; (d)方案2的晶胞; (e)两种光晶格势在xz平面上的分布

    Fig. 3.  Two types of optical lattices: (a) Spatial distribution pattern of in-plane optical lattice for case 1; (b) spatial distribution pattern of out-plane optical lattice for case 2; (c) unit cell for case 1; (d) unit cell for case 2; (e) the potentials of two types of optical lattices(V = –Er).

    图 4  实验时序图 红色表示的光晶格光强的变化, 最后自由飞行12 ms吸收成像, 其中(a)表示SF到MI的时序, (b)表示BEC到MI再到BEC的时序

    Fig. 4.  Schematic diagram of the experimental sequence: The red lines show the light intensity of optical lattice, and finally have an imaging of TOF 12 ms. The drawing (a) shows the sequence of SF to MI, drawing (b) shows the sequence of BEC to MI, and back to BEC.

    图 5  方案1的量子相变 (a0)表示获得MI态的时序图, (a1)到(a4)为SF态相变到MI态的过程, (a1)中红色标注为光晶格格点, (a2)中白色标注的格点主要由于激光偏振不纯、x轴和y轴方向上的光路不完全正交所导致的, 当势阱逐渐加深, 隧穿开始加强, 这些格点也越明显; (b0)为BEC相变到MI态, 再相变回BEC的时序图, 分别对应(b1)—(b4)

    Fig. 5.  Quantum phase transition for case 1: (a0) Reveals the sequence diagram of BEC to MI, from (a1) to (a4), show the imaging from SF to MI. In (a1), the red dashed circles show the lattice points, and in (a2), the white dashed circles show some incorrect lattice points, because the linearly polarization is impure and two beam paths along x axis and y axis are not totally orthogonal. Increasing potentials, these lattice points are more obvious; (b0) reveals the sequence diagram of MI to BEC, (b1) to (b4) show the imaging of MI to BEC after decreasing the potentials to zero.

    图 6  方案2的量子相变 (a0)表示获得MI态的时序图, 其中(a1)到(a4)为体系从SF相变到MI的过程; (b0)为BEC相变到MI态, 再相变回BEC的时序图, 其中(b1)到(b4)分别对应(a)中光晶格势阱降低到零, 重新获得BEC的空间分布图像

    Fig. 6.  Quantum transition for case 2: (a0) Reveals the sequence diagram of BEC to MI, from (a1) to (a4), show the imaging from BEC to MI; (b0) reveals the sequence diagram of MI to BEC, from (b1) to (b4), show the imaging from MI to BEC.

    Baidu
  • [1]

    文小刚(胡滨译) 2003 量子多体理论(北京: 高等教育出版社) 第1页

    Wen Xiaogang (translated by Hu Bin) 2003 The theory of Quantum Many-body Systems (Beijing: High Education Press) p1 (in Chinese)

    [2]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [3]

    Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S, Greiner M 2015 Phys. Rev. Lett. 114 213002Google Scholar

    [4]

    Bloch I, Greiner M 2005 Adv. Atom. Mol. Opt. Phys. 52 1Google Scholar

    [5]

    Vuletić, V, Ch an, H W, Black A T 2001 Phys. Rev. A 64 033405Google Scholar

    [6]

    Wang Y, Zhang X, Corcovilos T A, Kumar A, Weiss D S 2015 Phys. Rev. Lett. 115 043003Google Scholar

    [7]

    Kumar A, Wu T Y, Giraldo F, Weiss D S 2018 Nature 561 83Google Scholar

    [8]

    Kim M E, Chang T H, Fields B M, Chen C A, Hung C L 2019 Nat. commun. 10 1Google Scholar

    [9]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [10]

    Bernier J S, Sengupta K, Kim Y B 2007 Phys. Rev. B 76 014502Google Scholar

    [11]

    Kimura T, Tsuchiya S, Kurihara S 2005 Phys. Rev. Lett. 94 110403Google Scholar

    [12]

    Garcia-Ripoll J J, Martin-Delgado M A, Cirac J I 2004 Phys. Rev. Lett. 93 250405Google Scholar

    [13]

    Tu H-H, Zhang G-M, Yu L 2007 Phys. Rev. B 76 014438Google Scholar

    [14]

    Tu H-H, Zhang G-M, Yu L 2006 Phys. Rev. B 74 174404Google Scholar

    [15]

    Wu C, Zhang S-C 2005 Phys. Rev. B 71 155115Google Scholar

    [16]

    Wu C, Hu J P, Zhang S C 2003 Phys. Rev. Lett. 91 186402Google Scholar

    [17]

    Sebby-Strabley J, Anderlini M, Jessen P S, Porto J V 2006 Phys. Rev. A 73 033605Google Scholar

    [18]

    Sun K, Liu W V, Hemmerich A, Sarma S D 2012 Nat. Phys. 8 67Google Scholar

    [19]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 . Phys. Rev. Lett. 81 3108Google Scholar

    [20]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [21]

    Capogrosso-Sansone B, Söyler Ş G, Prokof’ev N, Svistunov B 2008 Phys. Rev. A 77 015602Google Scholar

    [22]

    Wen K, Meng Z M, Wang P J, Wang L W, Chen L C, Huang L H, Zhou L H, Cui X L, Zhang J 2020 Sci. Rep 10 5870Google Scholar

    [23]

    Xiong D Z, Wang P J, Chen H X, Zhang J 2010 Chin. Opt. Lett. 8 351Google Scholar

    [24]

    Chen H X, Xiong D Z, Wang P J, Zhang J 2010 Chin. Opt. Lett. 8 348Google Scholar

    [25]

    陈良超, 孟增明, 王鹏军 2017 66 083701Google Scholar

    Chen L C, Meng Z M, Wang P J 2017 Acta Phys. Sin. 66 083701Google Scholar

    [26]

    柴世杰, 王鹏军, 付正坤, 黄良辉, 张靖 2012 量子光学学报 18 171Google Scholar

    Chai S J, Wang P J, Fu Z K, Huang L H, Zhang J 2012 Acta Sin. Quantum Opt. 18 171Google Scholar

    [27]

    王鹏军, 熊德智, 陈海霞, 张靖 2010 光学学报 30 893Google Scholar

    Wang P J, Xiong D Z, Chen H X, Zhang J 2010 Acta Opt. Sin. 30 893Google Scholar

    [28]

    Spielman I B, Phillips W D, Porto J V 2007 Phys. Rev. Lett. 98 080404Google Scholar

  • [1] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩.  , 2024, 73(24): . doi: 10.7498/aps.73.20241103
    [2] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟.  , 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [3] 张志强. 简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链.  , 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [4] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变.  , 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [5] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测.  , 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [6] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [7] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变.  , 2021, (): . doi: 10.7498/aps.70.20211433
    [8] 保安. 各向异性ruby晶格中费米子体系的Mott相变.  , 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [9] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变.  , 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [10] 刘彪, 周晓凡, 陈刚, 贾锁堂. 交错跃迁Hofstadter梯子的量子流相.  , 2020, 69(8): 080501. doi: 10.7498/aps.69.20191964
    [11] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发.  , 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [12] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变.  , 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [13] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变.  , 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [14] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度.  , 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [15] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究.  , 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [16] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [17] 杨树荣, 蔡宏强, 漆伟, 薛具奎. 光晶格中超流费米气体的能隙孤子.  , 2011, 60(6): 060304. doi: 10.7498/aps.60.060304
    [18] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应.  , 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [19] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性.  , 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径.  , 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  7314
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-06-06
  • 上网日期:  2020-09-29
  • 刊出日期:  2020-10-05

/

返回文章
返回
Baidu
map