Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Current research status of rare earth oxygenated hydride photochromic films

Li Ming Jin Ping-Shi Cao Xun

Citation:

Current research status of rare earth oxygenated hydride photochromic films

Li Ming, Jin Ping-Shi, Cao Xun
PDF
HTML
Get Citation
  • Photochromic material, as an adaptive smart material, has a wide range of applications in smart windows, photoelectric sensors, optical storage, etc. Oxygen-containing rare-earth metal hydride (REHxOy) film, a new type of photochromic material, has attracted the attention of researchers for its efficient and reversible color-changing properties, simple and reproducible preparation methods, and fast darkening-bleaching time. In this paper we review the current research status of structural composition, color change mechanism, and property modulation of oxygen-containing rare-earth metal hydride films. Exposure to visible light and ultraviolet (UV) light can lead the optical transmission of visible and infrared (IR) light to degrade. The photochromic mechanisms can be grouped into four mechanisms: lattice contraction mechanism, oxygen exchange mechanism, local metal phase change, and hydrogen migration mechanism. Currently, performance can be tuned by controlling film morphology, designing chemical components, improving substrate adaptation, multilayer film structure design, etc. Finally, the future research focus of thin film is prospected.
      Corresponding author: Cao Xun, cxun@mail.sic.ac.cn
    • Funds: Project supported by ANSO International Cooperation Project of Chinese Academy of Sciences (Grant No. ANSO-CR-KP-2021-01) and the National Natural Science Foundation of China (Grant Nos. 51972328, 62175248).
    [1]

    Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Pooi S L, Long Y 2019 Adv. Energy Mater. 9 1902066Google Scholar

    [2]

    Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q 2020 Sci. Adv. 6 2386Google Scholar

    [3]

    Barachevsky V A, Strokach Y P, Krayushkin M M 2007 J. Phys. Org. Chem. 20 1007Google Scholar

    [4]

    Qin M, Huang Y, Li F, Song Y 2015 J. Mater. Chem. C 3 9265Google Scholar

    [5]

    Gavrilyuk A I 2013 Appl. Surf. Sci. 273 735Google Scholar

    [6]

    Eglitis R, Zukuls A, Viter R 2020 Photochem. Photobiol. Sci. 19 1072Google Scholar

    [7]

    Zhu Y, Yao Y, Chen, Zhang Z, Zhang P, Cheng Z, Gao Y 2022 Sol. Energy Mater. Sol. Cells 239 111664Google Scholar

    [8]

    Tang W 2022 Chem. Eng. J. 435 134670Google Scholar

    [9]

    Huiberts J N, Griessen R, Rector J H, Wijngaarden R J, Dekker J P 1996 Nature 380 231Google Scholar

    [10]

    Hoekstra A F T, Roy A S, Rosenbaum T F, Griessen R 2001 Phys. Rev. Lett. 86 5349Google Scholar

    [11]

    Ngene P, Longo A, Moojj L 2017 Nat. Commun. 8 1846Google Scholar

    [12]

    Ohumura A, Machida A, Watanuki T 2007 Appl. Phys. Lett. 91 151904Google Scholar

    [13]

    Mongstad T, Platzer-Bjorkman C, Maehlen J, Lennard P A M, Yevheniy P, Dam B, Marstein E, Karazhanov S Z 2011 Sol. Energy Mater. Sol. Cells 95 3596Google Scholar

    [14]

    Nafezarefi F, Schreuders H, Dam B 2017 Appl. Phys. Lett. 111 103903Google Scholar

    [15]

    Colombi G, Dekrom T, Chaykina D 2021 ACS Photonics 8 709Google Scholar

    [16]

    Baba E M, Montero J, Moldarev D, Moro M V, Wolff M, Primetzhofer D, Sartori S, Zayim E, Karazhanov S Z 2020 Molecules 25 3181Google Scholar

    [17]

    Moldarev D, Moro M V, You C C, Elbruz M B, Karazhanov S Z 2018 Phys. Rev. Mater. 2 115203Google Scholar

    [18]

    Chai J, Shao Z, Wang H, Ming C, Oh W, Ye T, Zhang Y, Cao X, Ping Jin, Sun Y 2020 Sci. China Mater. 63 1579Google Scholar

    [19]

    Colombi G, Cornelius S, Longo A 2020 J. Phys. Chem. C 124 13541Google Scholar

    [20]

    Pishtshev A, Strougovshchikov E, Karazhanov S 2019 Cryst. Growth Des. 19 2574Google Scholar

    [21]

    Chaykin D, Nafezarefi F, Colombi G, Cornelius S, Lars J 2022 J. Phys. Chem. C 126 2276Google Scholar

    [22]

    Montero J, Martinsen F A, Lelis M, Karazhanov S Z, Hauback B C, Marstein E S 2018 Sol. Energy Mater. Sol. Cells 177 106

    [23]

    Pishtshev A, Karazhanov S Z 2014 Solid State Commun. 194 39Google Scholar

    [24]

    You C C, Moldarev D, Mongstada T, Primetzhofer D, Wolffb M, Marsteina E S, Karazhanov S Z 2017 Sol. Energy Mater. Sol. Cells. 166 185Google Scholar

    [25]

    You C C, Mongstad T, Marstein E S, Karazhanov S Z 2019 Materialia 6 100307Google Scholar

    [26]

    Kantre K, Moro M V, Moldarev D 2020 Scr. Mater. 186 352Google Scholar

    [27]

    Mongstad T, Subrahmanyam A, Karazhanov S 2014 Sol. Energy Mater. Sol. Cells 128 270Google Scholar

    [28]

    Komatsu Y, Sato R, Wilde M, Nishio K, Katase T, Matsumura D, Saitoh H, Miyauchi M, Adelman J R, McFadden R M L, MacFarlane W A, Sugiyama J, Komatsu T H Y 2022 Chem. Mater. 34 3616Google Scholar

    [29]

    Montero J, Galeckas A, Karazhanov S Z 2018 Phys. Status Solidi B 255 1800139Google Scholar

    [30]

    You C C, Karazhanov S Z 2020 J. Appl. Phys. 128 013106Google Scholar

    [31]

    Shao Z, Cao X, Zhang Q, Long S, Chang T, Xu F, Jin P. 2019 Sol. Energy Mater. Sol. Cells 200 110044Google Scholar

    [32]

    Moro M V 2019 Sol. Energy Mater. Sol. Cells 201 110119Google Scholar

    [33]

    Baba E M, Weiser P M, Karazhanov S 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000459Google Scholar

    [34]

    Zhang Q, Xie L, Zhu Y, Tao Y, Li R, Xua J, Bao S, Jin P 2019 Sol. Energy Mater. Sol. Cells 20 109930

    [35]

    Dam B, Remhof A, Heijna M C R, Rector J H, Borsa D, Kerssemakers J W J 2003 J. Alloys Compd. 356–357 526Google Scholar

    [36]

    田民波, 李正操 2011 薄膜技术与薄膜材料 (北京: 清华大学出版社) 第251页

    Tian M B, Li Z C 2011 Thin Film Technology and Thin-Film Materials (Beijing: Tsinghua University Press) p251 (in Chinese)

    [37]

    Maehlen J P, Mongstad T T, You C C, Karazhanov S 2013 J. Alloys Compd. 580 119Google Scholar

    [38]

    Plokkera M P, Eijta S W H, Nazirisa F, Schutb H, Nafezarefic F, Schreudersc H, Corneliusc S, Dam B 2018 Sol. Energy Mater. Sol. Cells 177 97Google Scholar

    [39]

    Eijta S W H, Kroma T W H, Chaykinab D, Schuta H, Colombib G, Eggerc W, Dickmannc M, Hugenschmidtd C, Dam B 2020 Acta Phys. Pol. A 137 205Google Scholar

    [40]

    Montero J, Martinsen F A, García-Tecedor M, Karazhanov S Z, Maestre D, Hauback B, Marstein E S 2017 Phys. Rev. B 95 201301Google Scholar

    [41]

    Baba E M, Montero J, Strugovshchikov E, Zayim E, Karazhanov S 2020 Phys. Rev. Mater. 4 025201Google Scholar

    [42]

    Moldarev D, Stolz L, Marcos V 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000608Google Scholar

    [43]

    Moldarev D, Stolz L, Moro M V, Aðalsteinsson S M, Chioar I A, Karazhanov S Z, Primetzhofer D, Wolff M 2021 J. Appl. Phys. 129 153101Google Scholar

    [44]

    Hans M, Tran T T, Aðalsteinsson S M, Moldarev D, Moro M V, Wolff M, Primetzhofer D 2020 Adv. Opt. Mater. 8 2000822Google Scholar

    [45]

    Chandran C V, Schreuders H, Dam B, Janssen J W G, Bart J, Kentgens A P M 2014 J. Phys. Chem. C 118 22935Google Scholar

    [46]

    Nafezarefi F, Cornelius S, Dam B 2019 Sol. Energy Mater. Sol. Cells 200 109923Google Scholar

    [47]

    Moldarev D, Wolff M, Baba E M, Moro M V, You C C, Primetzhofer D, Karazhanov S Z 2020 Materialia 11 100706Google Scholar

    [48]

    Mayer M, Eckstein W, Langhuth H, Schiettekatte F, Toussaint U 2011 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 3006Google Scholar

    [49]

    陈赟斐, 魏峰, 王赫, 赵未昀, 邓元 2021 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W H, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [50]

    Chen J K, Mao W, Ge B, Wang J, Ke X Y, Wang V, Wang Y P, Döbeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar

    [51]

    白刚, 韩宇航, 高存法 2022 71 097701Google Scholar

    Bai G, Han Y H, Gao C F 2022 Acta Phys. Sin. 71 097701Google Scholar

    [52]

    You C C, Mongstad T, Maehlen J P 2015 Sol. Energy Mater. Sol. Cells 143 623Google Scholar

    [53]

    You C C, Mongstad T, Maehlen J P, Karazhanov S 2014 Appl. Phys. Lett. 105 031910Google Scholar

    [54]

    Moldarev D, Primetzhofer D, You C C, Karazhanov S Z, Montero J, Martinsen F, Mongstad T, Marstein E S, Wolff M 2018 Sol. Energy Mater. Sol. Cells 177 66Google Scholar

    [55]

    Strugovshchikov E, Pishtshev A, Karazhanov S 2021 Phys. Status Solidi B 258 2100179Google Scholar

    [56]

    拉毛, 包山虎, 莎仁 2018 化学学报 77 90Google Scholar

    La M, Bao S H, Sha R 2018 Acta Chim. Sin. 77 90Google Scholar

  • 图 1  REHxOy薄膜的光致变色机理、制备方法及应用展望

    Figure 1.  Photochromic mechanism, preparation method and application prospect of REHxOy film.

    图 2  REHxOy薄膜(YHxOy和GdHxOy)的结构模型 (a)晶格能计算GdHxOy立方相结构模型; (b) DFT理论预测YHxOy 17种结构相图[19,20]

    Figure 2.  Structural models of REHxOy (YHxOy and GdHxOy) films: (a) Lattice energy calculation GdHxOy cubic phase structure model; (b) DFT predicts 17 structural phase diagrams of YHxOy[19,20].

    图 3  氧浓度对薄膜带隙的影响 (a)梯度氧含量制备样品; (b)横向尺度上O/Y化学计量比; (c)横向尺度上带隙变化[24]

    Figure 3.  Effect of oxygen concentration on the band gap of thin films: (a) Samples prepared with gradient oxygen content; (b) the O/Y stoichiometric ratio in the horizontal direction; (c) the band gap variation in the horizontal direction[24].

    图 4  YHxOy薄膜光学性能和电学性能 (a)光照前后样品透过率、反射率和光学密度的变化[13]; (b) Tauc-plot法计算样品直接带隙与间接带隙[29]; (c)光照前后样品的电阻变化[28]

    Figure 4.  Optical and electrical properties of YHxOy films: (a) The changes in transmission, reflection, and optical density of YHxOy films before and after light exposure[13]; (b) the direct and indirect bandgap of YHxOy films[29]; (c) the changes in resistivity of YHxOy films under light induction[28].

    图 5  (a), (b)不同波长和强度光照下薄膜的光致变色响应[30]; (c), (d)不同温度下薄膜的光致变色响应[33]

    Figure 5.  (a), (b) Photochromic response of thin films under different wavelengths and intensities of light[30]; (c), (d) photochromic response of samples at different temperatures[33].

    图 6  (a)同步X射线原位表征光照下样品晶格变化[37]; (b)光照之后拉曼光谱中出现金属相峰位[40]; (c)不同气氛下样品光照后的褪色速度[41]; (d)光致变色前后薄膜成分变化[32]

    Figure 6.  (a) Simultaneous X-ray in situ characterization of sample lattice changes under illumination[37]; (b) appearance of metal phase peaks in Raman spectra after illumination[40]; (c) recovery rate of samples under different atmospheres after illumination[41]; (d) the change in film composition before and after photochromic[32].

    图 7  双相结构下光子诱导氢转移[44]

    Figure 7.  Photon-induced hydrogen transfer in a two-phase structure[44].

    图 8  光照后“双聚氢”结构的形成[18]

    Figure 8.  Formation of the dihydrogen structure after illumination[18]

    图 9  (a)不同衬底样品的光致变色响应[52]; (b) 不同厚度样品的光致变色响应[47]; (c)不同稀土元素样品的光致变色响应[14]; 不同溅射压力样品(d) YHxOy薄膜和(e) GdHxOy薄膜的光致变色响应[15], 以及(f)光致变色性能与化学组分之间的关系[15]

    Figure 9.  (a) Photochromic response of samples with different substrates[52]; (b) photochromic response of samples with different thicknesses[47]; (c) photochromic response of different rare earth element samples[14]. The photochromic response of different sputtering pressure samples: (d) YHxOy film; (e) GdHxOy film[15]; (f) relationship between photochromic properties and chemical components[15].

    图 10  光学设计的高透过率和高发射率模型[55]

    Figure 10.  High transmittance and high emissivity models for optical design[55].

    图 11  YHxOy与VO2复合薄膜的四态调控[31]

    Figure 11.  Four-state modulation of spectral changes in YHxOy and VO2 composite films[31].

    表 1  部分有机无机光致变色材料总结[1]

    Table 1.  Summary of some organic and inorganic photochromic materials[1].

    Type of the materialName of materialPhotochromism principleMethod of bleachingColor change
    OrganicDiarylethenesPhotocyclization reactionExpose to visible lightColorless → red
    FulgidePhotochemical conrotatoryExpose to visible lightPale yellow → red
    SpriopyranHetetolytic cleavage/photocyclizationExpose to visible light/heatingColorless → purple
    NaphthopyarnHetetolytic cleavage/photocyclizationRemoving UVColorless → gray
    InorganicTMOsWO3Photon prompted redox reactionRemoving UVColorless → blue
    TiO2Photon prompted redox reactionRemoving UV and
    exposing to air
    Faint yellow → black
    MoO3Intercalation-deintercalation of univalent cationsRemoving UVWhite → blue
    Metal halidesLead chloride [Pb3Cl6(CV)]H2O]nLight-triggered electron transferRemoving UV/
    anneal in air
    Pale yellow → blue
    AgClLight-triggered reversible decompositionRemoving UVTransparent → brown
    DownLoad: CSV

    表 2  已有报道稀土元素的性质

    Table 2.  Properties of reported rare earth element.

    ElementAtomic massIon size/nmSputtering pressure/PaBand gap/eVΔT/%文献
    Y890.0900.42.637[14]
    Gd157.250.0940.62.2545[14]
    Dy162.50.0910.62.2533[14]
    Er167.260.0880.62.435[14]
    DownLoad: CSV
    Baidu
  • [1]

    Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Pooi S L, Long Y 2019 Adv. Energy Mater. 9 1902066Google Scholar

    [2]

    Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q 2020 Sci. Adv. 6 2386Google Scholar

    [3]

    Barachevsky V A, Strokach Y P, Krayushkin M M 2007 J. Phys. Org. Chem. 20 1007Google Scholar

    [4]

    Qin M, Huang Y, Li F, Song Y 2015 J. Mater. Chem. C 3 9265Google Scholar

    [5]

    Gavrilyuk A I 2013 Appl. Surf. Sci. 273 735Google Scholar

    [6]

    Eglitis R, Zukuls A, Viter R 2020 Photochem. Photobiol. Sci. 19 1072Google Scholar

    [7]

    Zhu Y, Yao Y, Chen, Zhang Z, Zhang P, Cheng Z, Gao Y 2022 Sol. Energy Mater. Sol. Cells 239 111664Google Scholar

    [8]

    Tang W 2022 Chem. Eng. J. 435 134670Google Scholar

    [9]

    Huiberts J N, Griessen R, Rector J H, Wijngaarden R J, Dekker J P 1996 Nature 380 231Google Scholar

    [10]

    Hoekstra A F T, Roy A S, Rosenbaum T F, Griessen R 2001 Phys. Rev. Lett. 86 5349Google Scholar

    [11]

    Ngene P, Longo A, Moojj L 2017 Nat. Commun. 8 1846Google Scholar

    [12]

    Ohumura A, Machida A, Watanuki T 2007 Appl. Phys. Lett. 91 151904Google Scholar

    [13]

    Mongstad T, Platzer-Bjorkman C, Maehlen J, Lennard P A M, Yevheniy P, Dam B, Marstein E, Karazhanov S Z 2011 Sol. Energy Mater. Sol. Cells 95 3596Google Scholar

    [14]

    Nafezarefi F, Schreuders H, Dam B 2017 Appl. Phys. Lett. 111 103903Google Scholar

    [15]

    Colombi G, Dekrom T, Chaykina D 2021 ACS Photonics 8 709Google Scholar

    [16]

    Baba E M, Montero J, Moldarev D, Moro M V, Wolff M, Primetzhofer D, Sartori S, Zayim E, Karazhanov S Z 2020 Molecules 25 3181Google Scholar

    [17]

    Moldarev D, Moro M V, You C C, Elbruz M B, Karazhanov S Z 2018 Phys. Rev. Mater. 2 115203Google Scholar

    [18]

    Chai J, Shao Z, Wang H, Ming C, Oh W, Ye T, Zhang Y, Cao X, Ping Jin, Sun Y 2020 Sci. China Mater. 63 1579Google Scholar

    [19]

    Colombi G, Cornelius S, Longo A 2020 J. Phys. Chem. C 124 13541Google Scholar

    [20]

    Pishtshev A, Strougovshchikov E, Karazhanov S 2019 Cryst. Growth Des. 19 2574Google Scholar

    [21]

    Chaykin D, Nafezarefi F, Colombi G, Cornelius S, Lars J 2022 J. Phys. Chem. C 126 2276Google Scholar

    [22]

    Montero J, Martinsen F A, Lelis M, Karazhanov S Z, Hauback B C, Marstein E S 2018 Sol. Energy Mater. Sol. Cells 177 106

    [23]

    Pishtshev A, Karazhanov S Z 2014 Solid State Commun. 194 39Google Scholar

    [24]

    You C C, Moldarev D, Mongstada T, Primetzhofer D, Wolffb M, Marsteina E S, Karazhanov S Z 2017 Sol. Energy Mater. Sol. Cells. 166 185Google Scholar

    [25]

    You C C, Mongstad T, Marstein E S, Karazhanov S Z 2019 Materialia 6 100307Google Scholar

    [26]

    Kantre K, Moro M V, Moldarev D 2020 Scr. Mater. 186 352Google Scholar

    [27]

    Mongstad T, Subrahmanyam A, Karazhanov S 2014 Sol. Energy Mater. Sol. Cells 128 270Google Scholar

    [28]

    Komatsu Y, Sato R, Wilde M, Nishio K, Katase T, Matsumura D, Saitoh H, Miyauchi M, Adelman J R, McFadden R M L, MacFarlane W A, Sugiyama J, Komatsu T H Y 2022 Chem. Mater. 34 3616Google Scholar

    [29]

    Montero J, Galeckas A, Karazhanov S Z 2018 Phys. Status Solidi B 255 1800139Google Scholar

    [30]

    You C C, Karazhanov S Z 2020 J. Appl. Phys. 128 013106Google Scholar

    [31]

    Shao Z, Cao X, Zhang Q, Long S, Chang T, Xu F, Jin P. 2019 Sol. Energy Mater. Sol. Cells 200 110044Google Scholar

    [32]

    Moro M V 2019 Sol. Energy Mater. Sol. Cells 201 110119Google Scholar

    [33]

    Baba E M, Weiser P M, Karazhanov S 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000459Google Scholar

    [34]

    Zhang Q, Xie L, Zhu Y, Tao Y, Li R, Xua J, Bao S, Jin P 2019 Sol. Energy Mater. Sol. Cells 20 109930

    [35]

    Dam B, Remhof A, Heijna M C R, Rector J H, Borsa D, Kerssemakers J W J 2003 J. Alloys Compd. 356–357 526Google Scholar

    [36]

    田民波, 李正操 2011 薄膜技术与薄膜材料 (北京: 清华大学出版社) 第251页

    Tian M B, Li Z C 2011 Thin Film Technology and Thin-Film Materials (Beijing: Tsinghua University Press) p251 (in Chinese)

    [37]

    Maehlen J P, Mongstad T T, You C C, Karazhanov S 2013 J. Alloys Compd. 580 119Google Scholar

    [38]

    Plokkera M P, Eijta S W H, Nazirisa F, Schutb H, Nafezarefic F, Schreudersc H, Corneliusc S, Dam B 2018 Sol. Energy Mater. Sol. Cells 177 97Google Scholar

    [39]

    Eijta S W H, Kroma T W H, Chaykinab D, Schuta H, Colombib G, Eggerc W, Dickmannc M, Hugenschmidtd C, Dam B 2020 Acta Phys. Pol. A 137 205Google Scholar

    [40]

    Montero J, Martinsen F A, García-Tecedor M, Karazhanov S Z, Maestre D, Hauback B, Marstein E S 2017 Phys. Rev. B 95 201301Google Scholar

    [41]

    Baba E M, Montero J, Strugovshchikov E, Zayim E, Karazhanov S 2020 Phys. Rev. Mater. 4 025201Google Scholar

    [42]

    Moldarev D, Stolz L, Marcos V 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000608Google Scholar

    [43]

    Moldarev D, Stolz L, Moro M V, Aðalsteinsson S M, Chioar I A, Karazhanov S Z, Primetzhofer D, Wolff M 2021 J. Appl. Phys. 129 153101Google Scholar

    [44]

    Hans M, Tran T T, Aðalsteinsson S M, Moldarev D, Moro M V, Wolff M, Primetzhofer D 2020 Adv. Opt. Mater. 8 2000822Google Scholar

    [45]

    Chandran C V, Schreuders H, Dam B, Janssen J W G, Bart J, Kentgens A P M 2014 J. Phys. Chem. C 118 22935Google Scholar

    [46]

    Nafezarefi F, Cornelius S, Dam B 2019 Sol. Energy Mater. Sol. Cells 200 109923Google Scholar

    [47]

    Moldarev D, Wolff M, Baba E M, Moro M V, You C C, Primetzhofer D, Karazhanov S Z 2020 Materialia 11 100706Google Scholar

    [48]

    Mayer M, Eckstein W, Langhuth H, Schiettekatte F, Toussaint U 2011 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 3006Google Scholar

    [49]

    陈赟斐, 魏峰, 王赫, 赵未昀, 邓元 2021 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W H, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [50]

    Chen J K, Mao W, Ge B, Wang J, Ke X Y, Wang V, Wang Y P, Döbeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar

    [51]

    白刚, 韩宇航, 高存法 2022 71 097701Google Scholar

    Bai G, Han Y H, Gao C F 2022 Acta Phys. Sin. 71 097701Google Scholar

    [52]

    You C C, Mongstad T, Maehlen J P 2015 Sol. Energy Mater. Sol. Cells 143 623Google Scholar

    [53]

    You C C, Mongstad T, Maehlen J P, Karazhanov S 2014 Appl. Phys. Lett. 105 031910Google Scholar

    [54]

    Moldarev D, Primetzhofer D, You C C, Karazhanov S Z, Montero J, Martinsen F, Mongstad T, Marstein E S, Wolff M 2018 Sol. Energy Mater. Sol. Cells 177 66Google Scholar

    [55]

    Strugovshchikov E, Pishtshev A, Karazhanov S 2021 Phys. Status Solidi B 258 2100179Google Scholar

    [56]

    拉毛, 包山虎, 莎仁 2018 化学学报 77 90Google Scholar

    La M, Bao S H, Sha R 2018 Acta Chim. Sin. 77 90Google Scholar

  • [1] Yu Xiu-Dong, Liu Hai-Shun, Xue Lin, Zhang Xiang, Yang Wei-Ming. Annealing crystallization control mechanism of catalytic degradation properties of Fe-based amorphous ribbons. Acta Physica Sinica, 2024, 73(9): 098801. doi: 10.7498/aps.73.20240249
    [2] Ren Jun-Wen, Jiang Guo-Qing, Chen Zhi-Jie, Wei Hua-Chao, Zhao Li-Hua, Jia Shen-Li. Surface structure design of boron nitride nanotubes and mechanism of their regulation on properties of epoxy composite dielectric. Acta Physica Sinica, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] Yuan Guo-Liang, Wang Chen-Hao, Tang Wen-Bin, Zhang Rui, Lu Xu-Bing. Structure, performance regulation and typical device applications of HfO2-based ferroelectric films. Acta Physica Sinica, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [4] Shao Guang-Wei, Yu Rui, Fu Ting, Chen Nan-Liang, Liu Xiang-Yang. Growth behavior of WO3 crystal topological structure and its electrochromic properties. Acta Physica Sinica, 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [5] Zhang Gai, Xie Hai-Mei, Song Hai-Bin, Li Xiao-Fei, Zhang Qian, Kang Yi-Lan. Experimental analysis of influence of different charge-discharge modes on lithium storage performance of reduced graphene oxide electrodes. Acta Physica Sinica, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [6] Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang. Two-dimensional van der Waals: Characterization and manipulation of superconductivity. Acta Physica Sinica, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [7] LI Ming,  JIN Pinshi,  CAO Xun. Current Research on Rare Earth Oxygenated Hydride Photochromic Films. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221046
    [8] Gong Shao-Kang, Zhou Jing, Wang Zhi-Qing, Zhu Mao-Cong, Shen Jie, Wu Zhi, Chen Wen. Size-controlled resistive switching performance and regulation mechanism of SnO2 QDs. Acta Physica Sinica, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [9] Liu Di, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Phase field simulation of misfit strain manipulating domain structure and ferroelectric properties in PbZr(1–x)TixO3 thin films. Acta Physica Sinica, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [10] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [11] Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong. Tailoring structure and property of Ge-As-S chalcogenide glass. Acta Physica Sinica, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [12] Xu Wen-Xiang, Sun Hong-Guang, Chen Wen, Chen Hui-Su. A review of correlative modeling for transport properties, microstructures, and compositions of granular materials in soft matter. Acta Physica Sinica, 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [13] Kang Yong-Qiang, Gao Peng, Liu Hong-Mei, Zhang Chun-Min, Shi Yun-Long. Resonant modes in photonic double quantum well structures with single-negative materials. Acta Physica Sinica, 2015, 64(6): 064207. doi: 10.7498/aps.64.064207
    [14] Jiang Li-Hua, Zeng Xiang-Bin, Zhang Xiao. The variations in composition and bonding configuration of SiNx film under high annealing temperature treatment. Acta Physica Sinica, 2012, 61(1): 016803. doi: 10.7498/aps.61.016803
    [15] Liu Qi-Hai, Hu Dong-Sheng, Yin Xiao-Gang, Wang Yan-Qing. Defect mode in one-dimensional photonic crystal consisting of single-negative materials with an impurity layer. Acta Physica Sinica, 2011, 60(9): 094101. doi: 10.7498/aps.60.094101
    [16] Yang Yi-Ming, Qu Shao-Bo, Wang Jia-Fu, Xu Zhuo. A left-handed metamaterial composed of structures with both magnetic resonance and electric resonance. Acta Physica Sinica, 2009, 58(2): 1031-1035. doi: 10.7498/aps.58.1031
    [17] Hu Heng, Pan Long-Fa, Qi Guo-Sheng, Hu Hua, Xu Duan-Yi. Study of multi-level run-length limited photo-chromic storage. Acta Physica Sinica, 2006, 55(4): 1759-1763. doi: 10.7498/aps.55.1759
    [18] FENG BO-XUE, XIE LIANG, WANG JUN, JIANG SHENG-RUI, CHEN GUANG-HUA. STUDY ON ELECTROCHROMIC PERFORMANCES AND MECHANISM OF MICROCRYSTAL NiOxHy THIN FILMS FABRICATED BY R.F.DEPOSITION. Acta Physica Sinica, 2000, 49(10): 2066-2071. doi: 10.7498/aps.49.2066
    [19] CUI WAN-QIU, SHEN ZHI-QI, ZHOU DE-BAO. STUDY ON THE STRUCTURE、THE ELECTRICAL PROPER-TIES AND THE CONDUCTION MECHANISM OF THE POLYCRYSTAL MULTIPHASE MATERIAL Li2Mo2-xWxO6. Acta Physica Sinica, 1993, 42(7): 1101-1109. doi: 10.7498/aps.42.1101
    [20] Cui Wan-qiu; Shen Zhi-qi; Zhou De-bao. STUDY ON THE STRUCTURE THE ELECTRICAL PROPERTIES AND THE CONDUCTION MECHANISM OF THE POLYCRYSTAL MULTIPHASE MATERIAL Li_2Mo_2-x_W_xO_6. Acta Physica Sinica, 1991, 40(7): 1101-1109. doi: 10.7498/aps.40.1101
Metrics
  • Abstract views:  5482
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2022
  • Accepted Date:  29 June 2022
  • Available Online:  25 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回
Baidu
map