Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of ion temperature gradient mode in Chinese First Quasi-axisymmetric Stellarator

Huang Jie Li Mo-Shan Qin Cheng Wang Xian-Qu

Citation:

Simulation of ion temperature gradient mode in Chinese First Quasi-axisymmetric Stellarator

Huang Jie, Li Mo-Shan, Qin Cheng, Wang Xian-Qu
PDF
HTML
Get Citation
  • The Chinese First Quasi-axisymmetric Stellarator (CFQS) is now the only quasi-axisymmetric stellarator under construction in the world. In this work, ion temperature gradient (ITG) mode in CFQS is studied by using gyrokinetic Vlasov code GKV. The basic characteristics of the eletrtostatic ITG are separately given under the adiabatic condition and the non-adiabatic condition. There is a critical temperature gradient for ITG. The growth rate of ITG is proportional to the temperature gradient. Furthermore, the growth rate depends on not only the absolute value of density gradient, but also the plus or minus sign of the density gradient. The negative density gradient can strongly suppress the ITG. The kinetic electron can destabilize the ITG and the electron temperature gradient can also destabilize the ITG. For electromagnetic condition, the ITG modes can be suppressed by the finite plasma beta, and then a transition from ITG to Alfvenic ion temperature gradient mode/kinetic ballooning mode (AITG/KBM) comes into being. The maximum growth rate of KBM is linearly proportional to density gradient and temperature gradient when both gradients are large.
      Corresponding author: Huang Jie, jiehuang@swjtu.edu.cn
    • Funds: Project supported by the Chinese National Fusion Project for ITER (Grant Nos. 2022YFE03070000, 2022YFE03070001), the National Natural Science Foundation of China (Grant No. 11820101004), and the Sichuan Provincial International Science and Technology Innovation Cooperation Project, China (Grant No. 2021YFH0066).
    [1]

    Xu Y 2016 Matter Radiat. Extremes 1 192Google Scholar

    [2]

    Ho D D M 1987 Phys. Fluids 30 442Google Scholar

    [3]

    Boozer A H 1995 Plasma Phys. Controlled Fusion 37 A103Google Scholar

    [4]

    Subbotin A A, Mikhailov M I, Shafranov V D, Isaev M Yu, Nührenberg C, Nührenberg J, Zille R, Nemov V V, Kasilov SV, Kalyuzhnyj V N 2006 Nucl. Fusion 46 921Google Scholar

    [5]

    Garabedian P 1996 Phys. Plasmas 3 2483Google Scholar

    [6]

    Shimizu A, Liu H F, Isobe M, Okamura S, Nishimura S, Suzuki C, Xu Y, Zhang X, Liu B, Huang J, Wang X Q, Liu H, Tang C J, CFQS team 2018 Plasma Fusion Res. 13 3403123Google Scholar

    [7]

    Zarnstorff M C, Berry L A, Brooks A, Fredrickson1 E, Fu G Y, Hirshman S, Hudson, Ku L P, Lazarus E, Mikkelsen D, Monticello D, Neilson G H, Pomphrey N, Reiman A, Spong D, Strickler D, Boozer A, Cooper W A, Goldston R, Hatcher R, Isaev M, Kessel C, Ewandowski J L, Lyon J F, Merkel P, Mynick H, Nelson B E, Nuehrenberg C, Redi M, Reiersen W, Rutherford P, Sanchez R, Schmidt J, White R B 2001 Plasma Phys. Controlled Fusion 43 A237Google Scholar

    [8]

    Okamura S, Matsuoka K, Nishimura S, Isobe M, Nomura I, Suzuki C, Shimizu A, Murakami S, Nakajima N, Yokoyama M 2001 Nucl. Fusion 41 1865Google Scholar

    [9]

    Liu H F, Shimizu A, Isobe M, Okamura S, Nishimura S, Suzuki C, Xu Y, Zhang X, Liu B, Huang J, Wang X Q, Liu H, Tang C J, Yin D P, Wan Y, CFQS team 2018 Plasma Fusion Res. 13 3405067Google Scholar

    [10]

    Isobe M, Shimizu A, Liu H F, Liu H, Xiong G Z, Yin D P, Ogawa K, Yoshimura Y, Nakata M, Kinoshita S, Okamura S, tang C J, Xu Y, CFQS Team 2019 Plasma Fusion Res. 14 3402074Google Scholar

    [11]

    Liu H F, Shimizu A, Xu Y, Okamura S, Kinoshita S, Isobe M, Li Y B, Xiong G Z, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Yin D P, Wang Y, Murase T, Nakagawa S, Tang C J 2021 Nucl. Fusion 61 016014Google Scholar

    [12]

    Wang X Q, Xu Y, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X, Liu H, Cheng J, Tang C J, CFQS team 2021 Nucl. Fusion 61 036021Google Scholar

    [13]

    Horton W 1999 Rev. Mod. Phys. 71 735Google Scholar

    [14]

    Watanabe T H, Sugama H 2006 Nucl. Fusion 46 24Google Scholar

    [15]

    Nakata M, Nunami M, Sugama H 2017 Phys. Rev. Lett. 118 165002Google Scholar

    [16]

    Antonsen T M, Lane B 1980 Phys. Fluids 23 1205Google Scholar

    [17]

    Nakata M, Honda M, Yoshida M, Urano H, Nunami M, Maeyama S, Watanabe T H, Sugama H 2016 Nucl. Fusion 56 086010Google Scholar

    [18]

    Beer M A, Cowley S C, Hammett G W 1995 Phys. Plasmas 2 2687Google Scholar

    [19]

    Romanelli M, Bourdelle C, Dorland W 2004 Phys. Plasmas 11 3845Google Scholar

    [20]

    Du H R, Jhang H, Hahm T S, Dong J Q, Wang Z X 2017 Phys. Plasmas 24 122501Google Scholar

    [21]

    沈勇, 董家齐, 徐红兵 2018 67 195203Google Scholar

    Shen Y, Dong J Q, Xu H B 2018 Acta Phys. Sin. 67 195203Google Scholar

    [22]

    Baumgaertel J A, Hammett G W, Mikkelsen D R, Nunami M, Xanthopoulos P 2012 Phys. Plasmas 19 122306Google Scholar

    [23]

    Dominguez R R, Waltz R E 1988 Phys. Fluids 31 3147Google Scholar

    [24]

    Nunami M, Watanabe T H, Sugama H, Tanaka K 2011 Plasma Fusion Res. 6 1403001Google Scholar

    [25]

    Alcusón J A, Xanthopoulos P, Plunk G G, Helander P, Wilms F, Turkin Y, Stechow A von, Grulke O 2020 Plasma Phys. Controlled Fusion 62 035005Google Scholar

    [26]

    罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组 2022 71 075201Google Scholar

    Luo Y M, Wang Z H, Chen J L, Wu X K, Fu C L, He X X, Liu L, Yang Z C, Li Y G, Gao J M, Du H R, Kulun Integrated Simulation and Design Group 2022 Acta Phys. Sin. 71 075201Google Scholar

    [27]

    Mahmood M A, Rafiq T, Persson M, Weiland J 2009 Phys. Plasmas 16 022503Google Scholar

    [28]

    Dong J Q, Mahajan S M, Horton W 1997 Phys. Plasmas 4 755Google Scholar

    [29]

    Peeters A G, Angioni C, Apostoliceanu M, Jenko F, Ryter F, the ASDEX Upgrade team 2005 Phys. Plasmas 12 022505Google Scholar

    [30]

    Sandberg I, Isliker H, Pavlenko V P 2007 Phys. Plasmas 14 092504Google Scholar

    [31]

    Qi L, Kwon J, Hahm T S, Jo G 2016 Phys. Plasmas 23 062513Google Scholar

    [32]

    Malinov P, Zonca F 2005 J. Plasma Phys. 71 301Google Scholar

    [33]

    Kim J Y, Han H S 2017 Phys. Plasmas 24 072501Google Scholar

    [34]

    Pueschel M J, Jenko F 2010 Phys. Plasmas 17 062307Google Scholar

    [35]

    Xie H S, Lu Z X, Li B 2018 Phys. Plasmas 25 072106Google Scholar

    [36]

    Aleynikova K, Zocco A 2017 Phys. Plasmas 24 092106Google Scholar

    [37]

    Turnbull A D, Strait E J, Heidbrink W W, Chu M S, Duong H H, Greene J M, Lao L L, Taylor T S, Thompson S J 1993 Phys. Fluids B 5 2546Google Scholar

    [38]

    Dong J, Chen L, Zonca F 1999 Nucl. Fusion 39 1041Google Scholar

    [39]

    谢华生 2015 博士学位论文 (杭州: 浙江大学)

    Xie H S 2015 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [40]

    Aleynikova K, Zocco1 A, Xanthopoulos1 P, Helander1 P, Nührenberg C 2018 J. Plasma Phys. 84 745840602Google Scholar

  • 图 1  不同密度梯度和温度梯度下绝热ITG的增长率波数谱 (a) $ {R}_{0}/{L}_{n}=-2 $; (b) $ {R}_{0}/{L}_{n}=2 $; (c) $ {R}_{0}/{L}_{n}=8 $

    Figure 1.  Growth rate spectra of ITG for different density gradients and temperature gradients: (a) $ {R}_{0}/{L}_{n}=-2 $; (b) $ {R}_{0}/{L}_{n}=2 $; (c) $ {R}_{0}/{L}_{n}=8 $.

    图 2  不同密度梯度和温度梯度下绝热ITG的频率波数谱 (a) $ {R}_{0}/{L}_{n}=-2 $; (b) $ {R}_{0}/{L}_{n}=2 $; (c) $ {R}_{0}/{L}_{n}=8 $

    Figure 2.  Real frequency spectra of ITG for different density gradients and temperature gradients: (a) $ {R}_{0}/{L}_{n}=-2 $; (b) $ {R}_{0}/{L}_{n}=2 $; (c) $ {R}_{0}/{L}_{n}=8 $.

    图 3  绝热ITG的最大增长率与密度梯度和温度梯度的关系

    Figure 3.  Relationship of the maximum growth rate of adiabatic ITG to $ {R}_{0}/{L}_{n} $ and $ {R}_{0}/{L}_{T} $.

    图 4  考虑捕获电子效应后ITG的增长率(a)和频率(b)波数谱, 其中$ {R}_{0}/{L}_{n}=2 $, 电子温度梯度标长和离子温度梯度标长相等, 即$ {R}_{0}/{L}_{{T}_{\mathrm{e}}}={R}_{0}/{L}_{{T}_{\mathrm{i}}} $

    Figure 4.  Growth rate (a) and real frequency spectra (b) of kinetic ITG for $ {R}_{0}/{L}_{n}=2 $. Here, $ {R}_{0}/{L}_{{T}_{\mathrm{e}}}={R}_{0}/{L}_{{T}_{\mathrm{i}}} $.

    图 5  考虑捕获电子效应后ITG/TE-ITG最大增长率与密度梯度和温度梯度的关系, 其中$ {R}_{0}/{L}_{{T}_{\mathrm{e}}}={R}_{0}/{L}_{{T}_{\mathrm{i}}} $

    Figure 5.  Contour map of the maximum growth rate of kinetic ITG/TE-ITG mode vs. $ {R}_{0}/{L}_{n} $ and $ {R}_{0}/{L}_{T} $. Here, ${R}_{0}/ {L}_{{T}_{\mathrm{e}}} $$ ={R}_{0}/{L}_{{T}_{\mathrm{i}}}$.

    图 6  考虑捕获电子效应后ITG的增长率(a)和频率波数谱(b), 其中$ {R}_{0}/{L}_{n}=2 $, $ {R}_{0}/{L}_{{T}_{\mathrm{e}}}=8 $

    Figure 6.  Growth rate (a) and real frequency spectra (b) of kinetic ITG for $ {R}_{0}/{L}_{n}=2 $ and $ {R}_{0}/{L}_{{T}_{\mathrm{e}}}=8 $.

    图 7  考虑捕获电子效应后ITG最大增长率与密度梯度和离子温度梯度的关系, 其中$ {R}_{0}/{L}_{{T}_{\mathrm{e}}}=8 $

    Figure 7.  Contour map of the maximum growth rate of kinetic ITG vs. $ {R}_{0}/{L}_{n} $ and $ {R}_{0}/{L}_{{T}_{\mathrm{i}}} $. Here, $ {R}_{0}/{L}_{{T}_{\mathrm{e}}}=8 $.

    图 8  当波数$ {k}_{y}{\rho }_{\mathrm{i}}=1.0 $时增长率(a)与频率(b)随比压的变化(其中, $ {R}_{0}/{L}_{n}=2 $, $ {R}_{0}/{L}_{{T}_{\mathrm{e}}}={R}_{0}/{L}_{{T}_{\mathrm{i}}}=8 $), 图(a)中的箭头是从ITG转变为KBM的转变点

    Figure 8.  Growth rates (a) and real frequencies (b) vs. $ \beta $ for $ {R}_{0}/{L}_{n}=2 $ and $ {R}_{0}/{L}_{{T}_{\mathrm{i}}}={R}_{0}/{{L}}_{{{T}}_{\mathrm{e}}}=8 $ at $ {k}_{y}{\rho }_{\mathrm{i}}=1.0 $. The arrow is plotted in panel (a) to point the transition point from ITG to KBM.

    图 9  $\beta =1{\text{%}}$时, KBM的增长率(a)和频率(b)波数谱, 其中$ {R}_{0}/{L}_{n}=2 $, $ {R}_{0}/{L}_{{T}_{\mathrm{e}}}=8 $

    Figure 9.  Growth rate (a) and real frequency spectra (b) of KBM for $ {R}_{0}/{L}_{n}=2 $ and $ {R}_{0}/{L}_{{T}_{\mathrm{e}}}=8 $. Here, $\beta =1{\text{%}}$.

    图 10  $\beta =1{\text{%}}$时, KBM的最大增长率与密度梯度和离子温度梯度的关系, 其中$ {R}_{0}/{L}_{{T}_{\mathrm{e}}}=8 $

    Figure 10.  Contour map of the maximum growth rate of KBM vs. $ {R}_{0}/{L}_{n} $ and $ {R}_{0}/{L}_{{T}_{\mathrm{i}}} $. Here, $ {R}_{0}/{L}_{{T}_{\mathrm{e}}}=8 $ and $\beta =1{\text{%}}$.

    Baidu
  • [1]

    Xu Y 2016 Matter Radiat. Extremes 1 192Google Scholar

    [2]

    Ho D D M 1987 Phys. Fluids 30 442Google Scholar

    [3]

    Boozer A H 1995 Plasma Phys. Controlled Fusion 37 A103Google Scholar

    [4]

    Subbotin A A, Mikhailov M I, Shafranov V D, Isaev M Yu, Nührenberg C, Nührenberg J, Zille R, Nemov V V, Kasilov SV, Kalyuzhnyj V N 2006 Nucl. Fusion 46 921Google Scholar

    [5]

    Garabedian P 1996 Phys. Plasmas 3 2483Google Scholar

    [6]

    Shimizu A, Liu H F, Isobe M, Okamura S, Nishimura S, Suzuki C, Xu Y, Zhang X, Liu B, Huang J, Wang X Q, Liu H, Tang C J, CFQS team 2018 Plasma Fusion Res. 13 3403123Google Scholar

    [7]

    Zarnstorff M C, Berry L A, Brooks A, Fredrickson1 E, Fu G Y, Hirshman S, Hudson, Ku L P, Lazarus E, Mikkelsen D, Monticello D, Neilson G H, Pomphrey N, Reiman A, Spong D, Strickler D, Boozer A, Cooper W A, Goldston R, Hatcher R, Isaev M, Kessel C, Ewandowski J L, Lyon J F, Merkel P, Mynick H, Nelson B E, Nuehrenberg C, Redi M, Reiersen W, Rutherford P, Sanchez R, Schmidt J, White R B 2001 Plasma Phys. Controlled Fusion 43 A237Google Scholar

    [8]

    Okamura S, Matsuoka K, Nishimura S, Isobe M, Nomura I, Suzuki C, Shimizu A, Murakami S, Nakajima N, Yokoyama M 2001 Nucl. Fusion 41 1865Google Scholar

    [9]

    Liu H F, Shimizu A, Isobe M, Okamura S, Nishimura S, Suzuki C, Xu Y, Zhang X, Liu B, Huang J, Wang X Q, Liu H, Tang C J, Yin D P, Wan Y, CFQS team 2018 Plasma Fusion Res. 13 3405067Google Scholar

    [10]

    Isobe M, Shimizu A, Liu H F, Liu H, Xiong G Z, Yin D P, Ogawa K, Yoshimura Y, Nakata M, Kinoshita S, Okamura S, tang C J, Xu Y, CFQS Team 2019 Plasma Fusion Res. 14 3402074Google Scholar

    [11]

    Liu H F, Shimizu A, Xu Y, Okamura S, Kinoshita S, Isobe M, Li Y B, Xiong G Z, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Yin D P, Wang Y, Murase T, Nakagawa S, Tang C J 2021 Nucl. Fusion 61 016014Google Scholar

    [12]

    Wang X Q, Xu Y, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X, Liu H, Cheng J, Tang C J, CFQS team 2021 Nucl. Fusion 61 036021Google Scholar

    [13]

    Horton W 1999 Rev. Mod. Phys. 71 735Google Scholar

    [14]

    Watanabe T H, Sugama H 2006 Nucl. Fusion 46 24Google Scholar

    [15]

    Nakata M, Nunami M, Sugama H 2017 Phys. Rev. Lett. 118 165002Google Scholar

    [16]

    Antonsen T M, Lane B 1980 Phys. Fluids 23 1205Google Scholar

    [17]

    Nakata M, Honda M, Yoshida M, Urano H, Nunami M, Maeyama S, Watanabe T H, Sugama H 2016 Nucl. Fusion 56 086010Google Scholar

    [18]

    Beer M A, Cowley S C, Hammett G W 1995 Phys. Plasmas 2 2687Google Scholar

    [19]

    Romanelli M, Bourdelle C, Dorland W 2004 Phys. Plasmas 11 3845Google Scholar

    [20]

    Du H R, Jhang H, Hahm T S, Dong J Q, Wang Z X 2017 Phys. Plasmas 24 122501Google Scholar

    [21]

    沈勇, 董家齐, 徐红兵 2018 67 195203Google Scholar

    Shen Y, Dong J Q, Xu H B 2018 Acta Phys. Sin. 67 195203Google Scholar

    [22]

    Baumgaertel J A, Hammett G W, Mikkelsen D R, Nunami M, Xanthopoulos P 2012 Phys. Plasmas 19 122306Google Scholar

    [23]

    Dominguez R R, Waltz R E 1988 Phys. Fluids 31 3147Google Scholar

    [24]

    Nunami M, Watanabe T H, Sugama H, Tanaka K 2011 Plasma Fusion Res. 6 1403001Google Scholar

    [25]

    Alcusón J A, Xanthopoulos P, Plunk G G, Helander P, Wilms F, Turkin Y, Stechow A von, Grulke O 2020 Plasma Phys. Controlled Fusion 62 035005Google Scholar

    [26]

    罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组 2022 71 075201Google Scholar

    Luo Y M, Wang Z H, Chen J L, Wu X K, Fu C L, He X X, Liu L, Yang Z C, Li Y G, Gao J M, Du H R, Kulun Integrated Simulation and Design Group 2022 Acta Phys. Sin. 71 075201Google Scholar

    [27]

    Mahmood M A, Rafiq T, Persson M, Weiland J 2009 Phys. Plasmas 16 022503Google Scholar

    [28]

    Dong J Q, Mahajan S M, Horton W 1997 Phys. Plasmas 4 755Google Scholar

    [29]

    Peeters A G, Angioni C, Apostoliceanu M, Jenko F, Ryter F, the ASDEX Upgrade team 2005 Phys. Plasmas 12 022505Google Scholar

    [30]

    Sandberg I, Isliker H, Pavlenko V P 2007 Phys. Plasmas 14 092504Google Scholar

    [31]

    Qi L, Kwon J, Hahm T S, Jo G 2016 Phys. Plasmas 23 062513Google Scholar

    [32]

    Malinov P, Zonca F 2005 J. Plasma Phys. 71 301Google Scholar

    [33]

    Kim J Y, Han H S 2017 Phys. Plasmas 24 072501Google Scholar

    [34]

    Pueschel M J, Jenko F 2010 Phys. Plasmas 17 062307Google Scholar

    [35]

    Xie H S, Lu Z X, Li B 2018 Phys. Plasmas 25 072106Google Scholar

    [36]

    Aleynikova K, Zocco A 2017 Phys. Plasmas 24 092106Google Scholar

    [37]

    Turnbull A D, Strait E J, Heidbrink W W, Chu M S, Duong H H, Greene J M, Lao L L, Taylor T S, Thompson S J 1993 Phys. Fluids B 5 2546Google Scholar

    [38]

    Dong J, Chen L, Zonca F 1999 Nucl. Fusion 39 1041Google Scholar

    [39]

    谢华生 2015 博士学位论文 (杭州: 浙江大学)

    Xie H S 2015 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [40]

    Aleynikova K, Zocco1 A, Xanthopoulos1 P, Helander1 P, Nührenberg C 2018 J. Plasma Phys. 84 745840602Google Scholar

  • [1] Hou Yu-Mei, Chen Wei, Zou Yun-Peng, Yu Li-Ming, Shi Zhong-Bing, Duan Xu-Ru. Beta-induced Alfvén eigenmodes with frequency chirping driven by energetic ions in the HL-2A Tokamak. Acta Physica Sinica, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [2] Zhou Li-Na, Hu Han-Qing, Liu Yue-Qiang, Duan Ping, Chen Long, Zhang Han-Yu. Modelling study of fluid and kinetic responses of plasmas to resonant magnetic perturbation. Acta Physica Sinica, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [3] Su Xiang, Wang Xian-Qu, Fu Tian, Xu Yu-Hong. Suppression mechanism of equilibrium magnetic islands in CFQS low-$\boldsymbol \beta$ plasma. Acta Physica Sinica, 2023, 72(21): 215205. doi: 10.7498/aps.72.20230546
    [4] Chen Ning-Fei, Wei Guang-Yu, Qiu Zhi-Yong. Effect of radial electric field on ion-temperature gradient driven mode stability. Acta Physica Sinica, 2023, 72(21): 215217. doi: 10.7498/aps.72.20230798
    [5] Xiao Shi-Yan, Jia Da-Gong, Nie An-Ran, Yu Hui, Ji Zhe, Zhang Hong-Xia, Liu Tie-Gen. Multi-channel few-mode multicore fiber based surface plasmon resonance biosensor with open air-hole. Acta Physica Sinica, 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [6] Shen Yong, Dong Jia-Qi, Xu Hong-Bing. Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [7] Xie Hui-Qiao, Tan Yi, Liu Yang-Qing, Wang Wen-Hao, Gao Zhe. A collisional-radiative model for the helium plasma in the sino-united spherical tokamak and its application to the line intensity ratio diagnostic. Acta Physica Sinica, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [8] Zou Chang-Lin, Ye Wen-Hua, Lu Xin-Pei. Study of laser plasma interactions using one-dimensional particle-in-cell code in kinetic regime. Acta Physica Sinica, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [9] Lu He-Lin, Chen Zhong-Yong, Li Yue-Xun, Yang Kai. Magnetic shear effect on zonal flow generation in ion-temperature-gradient mode turbulence. Acta Physica Sinica, 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [10] Lu He-Lin, Wang Shun-Jin. Zonal flow dynamics in background of ion-temperature-gradient mode turbulence based on minimal freedom model. Acta Physica Sinica, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [11] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [12] HUANG CHAO-SONG, LI JUN. MODE COUPLING OF INTERCHANGE INSTABILITY IN PLASMAS. Acta Physica Sinica, 1992, 41(5): 783-791. doi: 10.7498/aps.41.783
    [13] ZHANG CHENG, DENG XIAO-HUA, HUO YU-PING. THE TIME-SPACE STRUCTURE EVOLUTION OF TOKAMAK PLASMA UNDER THE MUTUAL INTERACTIONS OF TEARING MODE WITH TRANSPORT PROCESS. Acta Physica Sinica, 1990, 39(10): 1573-1582. doi: 10.7498/aps.39.1573
    [14] Wang Mao-quan. THE EFFECT OF FLOWING PLASMA IN TOKAMAK ON TEARTING MODES. Acta Physica Sinica, 1986, 35(9): 1227-1232. doi: 10.7498/aps.35.1227
    [15] PAN CHUAN-HONG, DING HOU-CHANG, WU LING-QIAO. KINETIC THEORY ON BALLOONING-MODE IN COLLISIONAL PLASMAS. Acta Physica Sinica, 1986, 35(11): 1411-1425. doi: 10.7498/aps.35.1411
    [16] DONG JIA-QI. DOUBLE TEARING MODE IN PLASMA WITH MAGNETIC BRAIDING. Acta Physica Sinica, 1984, 33(10): 1341-1349. doi: 10.7498/aps.33.1341
    [17] GU YONG-NIAN. KINK INSTABILITIES OF A SHARP BOUNDARY PLASMA WITH SMALL ASPECT RATIO. Acta Physica Sinica, 1984, 33(4): 554-560. doi: 10.7498/aps.33.554
    [18] SHI BING-REN. ON THE SECOND STABILITY REGION OF TOKAMAK PLASMAS AGAINST HIGH-n BALLOONING MODES. Acta Physica Sinica, 1983, 32(11): 1398-1406. doi: 10.7498/aps.32.1398
    [19] GUO SHI-CHONG, SHEN JIE-WU, CHEN LIU, CAI SHI-DONG. ANALYTICAL THEORY OF ION-TEMPERATURE-GRADIENT INSTABILITY. Acta Physica Sinica, 1982, 31(1): 17-29. doi: 10.7498/aps.31.17
    [20] Shi Bing-ren. STABILITY OF HIGH-BETA TOKAMAK PLASMAS. Acta Physica Sinica, 1982, 31(10): 1308-1316. doi: 10.7498/aps.31.1308
Metrics
  • Abstract views:  5738
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2022
  • Accepted Date:  28 June 2022
  • Available Online:  08 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回
Baidu
map